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Forward

Since late 1976, we have been involved in what we believe is a new
approach to computer program testing, an approach called mutation analysis
(and we shall forever be indebted to Jerome Feldman for suggesting the
term). The main novelties of the mutation approach to program testing are
its simplicity, its empirical basis, its ease of mechanical implementation,
and its tractability for scientific analysis. Although much remains to be
learned about mutation as a testing tool, there is a considerable body of
written material which describes our initial experience with the technique.

Much of this material has appeared only in workshops or as memoranda,
so we have been urged to collect it together for wider dissemination. The
current collection is the result. The reader should note that the
selections do not appear in chronological order; rather, they are organized
so that a sufficiently patient reader may proceed from the conceptual basis
of mutation analysis through implementation, application, and theoretical

- issues.

We expect to distill much of this material into a more formal treat-
- ment in the coming months; as always, comments and criticisms of all kinds

will be appreciated.

Richard A. DeMillo
School of Information and Computer Science
Georgia Institute of Technology

Richard J. Lipton
- Department of Electrical Engineering and

Computer Science
University of California, Berkeley

Frederick G. Sayward
Department of Computer Science
Yale University

Sunmmer, 1979
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Hints on Test Data Selection:
Help for the Practicing Programmer
Richard A. DeMillo Richard .1. Lipton and Frederick G. Sayward

-Georgia Institute of Technology Yale University

In many cases tests of a program that uncover simple* errors are also effective in uncovering much more complex
errors. This so-called coupling effect can be used to save
work during the testing process.

Much of the technical literature in software How, then, should programmers cope? Their
reliability deals with tentative methodologies and more sophisticated general methodologies are not

-underdeveloped techniques: hence it is not surpris- likely to be applicable.' In addition, they have the
ing that the programming staff responsible for debug- burden of convincing managers that their software
ging a large piece of software often feels ignored. is indeed reliable.
It is an- economic and political requirement in most
production programming shops that programmers
shall spend as little time as possible in testing. The The coupling etlect
programmer must therefore be content to test
cleverly but c.vaply; state-of-the-art methodologies Programmers. however, have one great advantage

-always seem to be just beyond what can be afford- that is almost never really exploited: they create
ed. We intend to convince the reader that much programs that are close to being correct! Program-
can be accomplished even under these constraints. mers do not create programs at random; competent

From the point of view of management. there is programmers, in their many iterations through the
some justification for opposing a long-term view of design process, are constantly whittling away the
the testing phase of the development cycle. Figure 1 distance between what their programs look like
shows the relative effect of testing on the remain- now and what they are intended to look like. Pro-
ing system bugs for several medium-scale systems grammers also have at their disposal
developed by System Development Corporation.' e a rough idea of the kinds of errors most likely
Notice that in the last half of the test cycle, the to occur;
average change in the known-error status of a . the ability and opportunity to examine their
system is 0.4 percent per unit of test.ing effort. rgasi eal
while in the first half of the cycle, 1.54 percent of rgasi eal
the errors are discovered per unit of testing effort. Error classifications. In attempting to formulate
Since it is enormously difficult to be convincing in acmrhnieter fts aaslcin ua
stating that the testing effort is complete. th Gar oprhnsiv toheoofdestgh data selctoneSsand
apparently rapidly decreasing return per unit of G.hr n onGoeog'hv ugse
effort invested becomes a dominating concern. The that errors be ciassifiad as follows:
standard solution, of course, is to limit the amount 1l) failure to satisfy specifications due to imple-

-of testing time to the most favorable part of the mentation error:
cycle. 121 failure to write specifications that correctly

represei.1 a design:
(M failure to understand a requirement:
(4) failure to satisfy a requirement.

Programmers have one great advantage But these are global concerns. Errors are always
that is almost never exploited: they reflected in programs as

-create programs that aire close to being s missing control paths.
correct! * inappropriate path gelection, or

__________________________________ * inappropriate or miSsing actions.
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We do not explicitly address classifications (2) may not have been affected at all! In general, the
and (3) in this article, except to point out that even relative ordering of P and Q may be irrelevant or
here a programmer can do much without fancy partially unknown and side effects may occur, so
theories. If we are right in our perception of pro- that actually the eight paths shown in Figure 3 are
grams as being close to correct, then these errors required to ensure that the statement has been
should be detectable as small deviations from the adequately tested.
intended program. There is an amazing lack of
published data on this subject, but we do have
some idea of the most common errors. E. A. Youngs. 10

in his PhD dissertation,' analyzed 1258 errors in
Fortran. Cobol. PLII, and Basic programs. The
errors were distributed as shown in Table 1.

In addition to these errors, certain other errors -
were present in negligible quantities. There were,
for instance, operating system interface errors, V
such as incorrect job identification and erroneous z,
external I/O assignment. Also present were errors
in comments, pseudo-ops, and no-ops which for
various reasons created detectable error conditions.

Complex errors coupled. How, then, do the rela- 20

tively simple error types discovered by Youngs
connect with the Gerhart-Goodenough error classi- 0 1 ___ _

fication? Well, the naive answer is that since arbi- ,0 00 30 ,0 07 00 70 8,

trarily pernicious errors may be responsible for a FEACENTOf TES71MG EFFORT

given failure, it must be that simple errors com- E

pound in more massive error conditions. For the Figure 1. More programming errors are found in the early part of the

practical treatment of test data, the Youngs error test cycle then In the final part.

statistics, therefore, do not seem to help much at
all. Fortunately though, the observation that pro-
grams are "close to correct" !eads us to an assump- Table 1. Frequency of occurrence of 1258 errors
tion which makes the high frequency of simple In Fortran, Cobol, PLiI, and Basic programs.

errors very important:
Relative

The coupling effect Test data that distinguishes Frequency
all programs differing from a correct one by only Error Type o Occurrence
simple errors is so sensitive that it also implic-
itly distinguishes more complex errors. Error in assignment or computation 27

Allocation error 15
In other words, complex errors are coupled to Other. unknown, or multiple errors 11
simple errors. There is. of course, no hope of "prov- Unsuccessful iteration .09
ing" the coupling effect; it is an empirical principle. Other I/0 error 071/0 formatting error 06
If the coupling effect can be observed in "real-world" Error in brahching
programs, then it has dramatic implications for unconditional 01

testing strategies in general and domain-specific, conditional 05
limited testing in particular. Rather than scamper Parameter or subscript violation 05
after errors of undetermined character, the tester Subprogram invocation error 05
should attempt a systematic search for simple Misplaced delimiter 04

Oata error 02errors that will also uncover deeper errors via the Error in location or marker 02
coupling effect. Nonterminating subprogram Or

Path analysis. This point seems so obvious that
it's not worth making: test to uncover errors. Yet
it's a point that's often lost in the shuffle. In a
common methodology known as path analysis, the
point of the test data is to drive a program through
all of its control paths. It is certainly hard to criti-
cize such a goal, since a thoroughly tested program
must have been exercised in this way. But unless
one recognizes that the test date should also dis-
tinguish errors, he might be tempted to conclude,
for example, that the program segment diagrammed
in Figure 2 can be tested by exercising paths 1-2
and 1-3. even though one of the clauses P and Q Figure 2. Sample program segment with two paths.
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Two examples given below indicate that test (2) on that data P gives the same results as
data derived to uncover simple errors can. in fact, some P.
be vastly superior to. say, randomly chosen data or
data generated for path analysis. A byproduct of In case 11) P, is said to be dead: the "error" that
the discussion will be some evidence for the coupling produced P. from P was indeed distinguished by
effect. A third example reveals another advantage the test data. In case (2). the mutant P, is said to
of selecting test data with an eye on coupling: be live; a mutant may be live for two reasons:
since it's a problem-specific activity, there are
enhanced possibilities for discovering useful heu- (I the test data does not contain enough sensi-
ristics for test data selection. This example will tivity to distinguish the error that gave rise to
lead to useful advice for generating test vectors for P,. or
programs that manipulate arrays. (2) P and P are actually equivalent programs

Our groups at Yale University and the Georgia and no test data will distinguish them (i.e., the
Institute of Technology have constructed a system "error" that gave rise to P, was not an error at
whereby we can determine the extent to which a all).
given set of test data has adequately tested a
Fortran program by direct measurement of the Test data that leaves no live mutants or only live
number and kinds of errors it is capable of uncover- mutants that are equivalent to P is adequate in the

ing. This method, known as program mutation, is following sense: Either the program P is correct or
used interactively: A programmer enters from a therm is an unexpected error in P. which-by the
terminal a program, P, and a proposed test data coupling effect-we expect to happen seldom if the

set whose adequacy is to be determined. The mute- errors used to create the mutants are carefully

tion system first executes the program on the test chosen.

data: if the program gives incorrect answers then Now, it is not completely apparent that this
certainly the program is in error. On the other process is computationally feasible. But, as we
hand, if the program gives correct answers, then it describe in more detail elsewhere, there is a very
may be that the program is still in error, but the good choice of methodology for generating mute-
test data is not sensitive enough to distinguish tions to bring the procedure within attractive
that error: it is not adequate. The mutation system economic bounds.'
then creates a number of mutations of P that differ Apparently, the information returned by the
from P only in the occurrence of simple errors (for mutation system can be effectively utilized by the
instance, where P contains the expression "B.LE*C" programmer. The programmer looks at a negative
a mutation will contain "B.EQC"). Let us call response from the system as a "hard question"

concerning his program (e.g., "The test data you've
Now, for the given set of test data there are only given me says it doesn't matter whether or not this

two possibilities: test is for equality or inequality: why is that?")

(1) on that data P gives different results from and is able to use his answers to the question as a
the P. mutations, or guide in generating more sensitive test data.

P ?

r T 
FTF

I> r D1
00 P p

0D 00 00 00 0D
Figure 3. Eight paths may be required for an adequate test.
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A simple example 3 IFIA().GF.A1Ri)R = I
RETURN

Our first example is very simple; it involves the END

MAX algorithm used for other purposes by Peter SUBROUTINE MAX IA,NRi
Naur in the early 1960"s. The task is to set a vari- INTEG ER A(N).I.N.R
able R to the index of the first occurrence of a I R=1
maximum element in the vector A(l). I A(N). 2 D03 I=2.N.1
For example, the following Fortran subroutine 3 IFIA(RI.C.T.A(ROIR a I
might be offered as an implementation of such an RETURN

algorithm: 
EN I)

SUBROUTINE MAX (A.N.R) Let us try to kill as many of these mutants a,
INTEGER A(NtI.N.R possible. In view of the first difficulty, we might

I R=I guess that our data is not yet adequate becau';e itSIF A(1).GT.'A(R R=I does not contain repeated elements. So. let us add
RETURN A(II A(2) A(3)
END

data 4 2 2 1
We will choose for our initial set of test data three
vectors (Table 2). Now, replacing .GT. by GE. and running on

data 4 gives erroneour results so that all mutants
arising from simple relational errors are dead. Sur-

Table 2. Three vectors conutltute the Initial prisingly. data 4 a*so distinguishes the two errors
Set of test data. in A(l): so, we are left with only the last mutant

arising from the "constant" error: variation in begin-

A(l) A(2) A(3) ning the Do loop. But closer inspection of the pro-gram indicates that starting the Do loop at "I"
data 1 1 2 3 rather than "2" has no effect on the program, other
data 2 1 3 2data 3 3 3 2 than to trivially increase its running time. So no

choice of test data will distinguish this "error,"
since it results in a program equivalent to MAX. So
we conclude that since the test data 1-4 leaves only

How sensitive is this data? By inspection, we live mutants that are equivalent to MAX, it is
notice that if an error had occurred in the relational adequate.
operation of the IF statement, then either data 1.
data 2. or data 3 would have distinguished those
errors, except for one case. None of these data Comparisons with path analysis
vectors distinguishes .GE. from .GT. in the IF State-
ment. Similarly, these vectors distinguish all simple This example illustrates hidden paths in a program
errors in constants except for starting the Do loop which should also be exercised by the test data. To
at "I" rather than "2." All simple errors in vari- illustrate what hidden paths are, consider the
ables are likewise distinguished except for the Fortran program-call it P-suggested by C. V.
errors in the IF statement which replace "A") by Ramamoorthy and his colleagues;
"I" or by "AfR)."

That is, if we run the data set above in any of the INTEGER A.BC.DREAD 10,A.BC
following mutants of MAX, we get the same results. 10 FORMAT(4110

5 IFI(A.GE.B) .AND.(B.GE.C) GOTO 100
SUBROUTINE MAX (A.N.RI PRINT 50
INTEGER A(N).I.N.R 50 FORMAT(IH .*LENGTH OF TRIANGLE NOT IN

I R=I IORDER*)
2 DO 3 1 I.,N.1 STOP
3 IF(AI).GT.A(R})R=1 100 IF(A.EQ.R) OR. (B.EQC) GOTO 500
RETURN A=A*A
END B=B*R

C=C*02
SUBROUTINE MAX (A.N.RI 1)=B ±C
INTEGER A(NI.N.R IF (A.NE.D) GOTO 200

I R=I PRINT 150
2 DO3 1-2.N.I 150 FORMAT(I H.$RIGHT ANGLED TRIANGLE~i
3 IFfI.OT.A(RitR z I STOP
RETURN 200 IF (A.LT.D). GOTO 300
END PRINT 250

250 FORMATI H .*OBTUSE ANGLED TRIANGLE')
SUBROUTINE MAX (A.N.R STOP
INTEGER A(N).I.N.R 300 PRINT 350

I R=I
2 DO 3 I-2.N.1 350 FORMAT(IH.*ACUTE ANGIED TRIANGLE*)
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STOP P and P' differ only in the logical expressions
500 IF I (A.EQ.Bi AND. (A.EQ.C GOTO 600 found at statements 5 and 100.* The test data T

PRINT 550 does not sufficiently test the compound logical550 FORMAT11H.*ISOCELES TRIANGI.E*iSTOP expressions of P; T only tests the single-clause

600 PRINT650 logicals found in the corresponding statements of
650 FORMAT(I '.EQUILATERAL TRIANGLE*) P'. Hence, T' is a stronger test of P than is T (i.e..

STOP for P we have more confidence in the adequacy of
END T' than in the adequacy of 7I. Note that the logical

expression in statement 5 of P could be replaced
The intent of this program is to categorize triangles, by B.GE.C to yield a program P" which produces
given the lengths of their sides. A typical path correct answers on T'. The test case A=5, B=7.
analysis system will derive test data-call it T- C=6 will remedy this and provide still a stronger
which exercises all paths of P (Table 3). test of P.

Table 3. Teal data T to exercise the Fortran program P. A more substantial example
TEST CASE A B C TRIANGLE TYPE

1 2 12 27 ILLEGAL Our last example involves the FIND program of
2 5 4 3 RIGHT ANGLE C.A.R. Hoare.' FIND takes, as input, an integer array
3 26 7 7 ISOSCELES A. its size N ;o 1, and an array index F, 1 4 F < N
4 19 19 19 EOUILATERAL After execution of FIND, all elements to the left of
5 14 6 4 OBTUSE6 24 23 21 ACUTE A(F) have values no larger than A(F) and all elements

to the right are no smaller. Clearly. this could be
achieved by sorting A: indeed, FIND is an inner

Now consider the following mutant program P': loop of a fast sorting algorithm, although FIND

INTEGER. AB,C.D executes faster than any sorting program. The
READ 10,A.B.C Fortran version of FIND, translated directly from

10 FORMAT4IIO) the Algol version. is given below:
5 IF( A.GE.B I GOTO 100

PRINT 50 SUBROUTINE FINDIA.N.Fi
50 FORMATiIH .*LENGTH OF TRIANGLE NOT IN C

IORDER*) C FORTRAN VERSION OF HOARE'S FIND
STOP C PROGRAM (DIRECT TRANSLATION OF

100 IF( B.EQC ) GOTO 500 C THE ALGOL 60 PROGRAM FOUND IN
- A=A*A C HOARE'S "PROOF OF FIND" ARTICLE

B=B'B C IN CACM 1971).
C=C*02 INTEGER AiN),N.F
D=B+C INTEGER M.NS.R.I.J.W
IF (A.NE.D) GOTO 200 MI
PRINT 150 NS=N

150 FORMATIIH .RIGHT ANGLED TRIANGLE*) 10 IF(M.GENS) GOTO 1000
STOP R=A(F)

200 IF (A.LT.D) GOTO 300 I=M
- PRINT 250 J=NS

250 FORMAT(IH .*OBTUSE ANGLED TRIANGLE*) 20 IF(I.GT.J) GOTO 60
STOP 30 IF(A(I.GE.R) GOTO 40

300 PRINT 350 3 I l
350 FORMAT(IH .'ACUTE ANGLED TRIANGLE*) GOTO 30

STOP 40 IF(R.GE.A(J)) GOTO 50
500 IF) (A.EQ.B) .AND. (A.EQC) GOTO 600 j=j_!

PRINT 550 GOTO 40
550 FORMAT(IH .ISOCELES TRIANGLE*) 50 IF(I.GT.J) GOTO 20

STOP C
600 PRINT 65H C COULD HAVE CODED GO TO 60 DIRECTLY
650 FORMAT(lH EQUILATERAL TRIANGLE' C -DIDN'T BECAUSE THIS REDUNDANCY

STOP C IS PRESENT IN HOARE'S ALGOL
- END C PROGRAM DUE TO THE SEMANTICS OF

P' prints the same answers as P on T but P' is C THE WHILE STATEMENT.
clearly incorrect since it categorizes the two test C W=A)
cases shown in Table 4 as acute angle triangles: A(li=AiJ)

A(JI=W
1=1+1Table 4. Two test cao are acute angle triangles. JfJ-l

TEST CASE A B C TRIANGLE TYPE GO TO 20

7 7 5 6 ILLEGAL
8 26 26 7 ISOSCELES *The clause A.EQ B in statement 500 i redundant

38 COMPUTER



6

6i1 I FiF GTJ GOT) 7(1 prisingly poor, as b8 live mutants are left. That is,
NS=.J with these 24 vectors there are 58 possible changes
G(OTO W0 that could have been made in FIND that would have

,o I FiI G(;TF) GOTO 1000%I = I yielded identical output. Eventually, by increasing

(;OTO 10 the number of A vectors to 49, only 10 live mutants
1o0 RETURN remain. Using a data reduction heuristic, the 49 A

END vectors can be reduced to a set of seven A vectors.
leaving 14 live mutants. These vectors appear in

FvI) is of particular interest for us because a Table 5.
subtle multiple-error mutant of FIND, called BUGGY
fr-I). has been extensively analyzed by SILECr. a
system that generates test data by symbolic execu- Table 5. D-The simpla-error adequate data for FIND.
tion* In FIND, the elements of A are interchanged
depending on a conditional of the form

TEST CASI A
X LE AIFi AND. A(F! .,E Y 24

1 934 n
Sice A(F) itself may be exchanged, the effect of "; 2 - "I

thi, te~t is preserved by setting a temporary voiri ( 1)

,hle H = A(F) and using the conditional 4 -.5 - -

X.LE. R.AND. R.LE. Y 5 ( 32 0. 3
6 (023 :3

In BUGGYFIND, the temporary variable R is not 7 (0.

used: rathe:., the first form of the conditional is
used to determine whether the elements of A are
to be exchanged. The SELECT system derived the In constructing the initial data, after the 24 per-
test data A = 13,2.0,1) and F = 3, on which BUGGY. mutations, the 49 A vectors were chosen somewhat
FIND fails. The authors of SELECT observed that haphazardly at first. Later, A vectors were chosen
(HL GGYFIND fails on only 2 of the 24 permutations specifically to eliminate a small subset of the
of 10,1,2.3), indicating that the error is very subtle.* remaining errors. There were some interesting

We will first describe a simple-error analysis of observations concerning the 49 vectors:
the mutants of FIND, beginning with initially naive
guesses of test data and finishing with a surpris- (1) The average A vectors kills about 550 mutants.
ingly adequate set of 7 A vectors. This data will (2) The "best" A vector kills 703 mutants (test
he called D,. The detailed analysis needed to deter- case 1 of Table 5).
mine how many errors are distinguished by a data (3) The "worst" A vector kills only 70 mutants.
set were carried out on the Mutation system at This was the degenerate A = (0).
Yale University. The data reduction heuristic uses both the best

We have asked several colleagues how they and the worst A vectors to pare the 49 A vectors
would te;t FiND, and they have nearly unanimously to seven.
replied that they would use permutations. We first The final step in showing that the data of Table 5
describe analysis which we have done using permu- is indeed adequate is to show that the 14 remain-
t3tions of the array indices as data elements. In ing mutants are programs that are actually equiva o

one case, we use all permutations of length 4 and lent to FIND. That is, the 14 "errors" that could
in another case, we use random permutations of have been made are not really errors at all. One
lengths 5 and 6. Surprisingly, the intuitively appeal- might be surprised at the large number of equiva-
ing choice of permutations as test data is a very lent mutants (approximately 2 percent). This we
poor one. attribute to FIND, long history (it was first pub-

We then describe analysis in which another lished in 1961). Over the years. FIND has been
popular intuitive method is used: random data. We "honed" to a very efficient state-so efficient that
show that the adequacy of random data is very many slight variations result in equivalent but
dependent on the interval from which the data Is slower programs. For example, the conditional
drawn (i.e., problem-specific information is needed
to obtain good results). I. GT. F

Finally. we find evidence for the coupling effect (i.e., in the statement labeled 70 in the FIND can be
adequate simple-error data kills multiple-error mu- replaced by any logically false conditional, or the
tants) in two ways. First, the multiple-error mutant IF statement can be replaced by a CONTINUE state-
Rt((;YFIND fails on the test data D.. Next. we ment, to result in an equivalent but slower program.
describe the very favorable results of executing It is not likely that this phenomenon will occur
random multiple-error mutants of FIND or, D,. in programs which haven't been "fine-tuned.'" We

We begin the analysis with the 24 permutations estimate that production programs have well under
of (0,1.2,3) with F fixed at 3. The results are sur- 1 percent equivalent mutants.

0,.. found that H('GGYFIND failed on only the aforementioned Let us now compare D, with exhaustive tests on
permutations of (01.2.3) and then with tests on

A:),: 1978 39
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random permutations of 10.1.2.3,4) and (0,1,2,3.4.5). Although the intervals in Table 8 are poor. one
Table 6 describes the results for all permutations could conceive of worse intervals. For example,
of (0,I.2.3). draw A from [1, size of AI. However. in view of the

permutation results, such data will surely behave
worse than that of Table 8.

Table 6. Results of all permutations of (1,2,3,4). Three points are in order. First, even with very
bad data. D, is much better than simple permuta-

NUMBER OF NUMBER OF tions. Second, it took 1000 very good random
TEST CASES VALUES OF F LIVE MUTANTS vectors to perform as well as D,. Third. using

24 1 158 random vectors yields little insight. The insight
24 2 60 gained in constructing D, was crucial to detecting
24 3 58 the equivalent versions of FIND.
24 4 141 The coupling effect shows itself in two ways.
96 1 2.3 &4 38 First, BUG(;YFIND fails on the adequate D,; hence,

we have a concrete example of the coupling effect
In Table 7 the same information is provided for Although the second observation involves random-

the case of random test data. ness, and thus is indirect, it is perhaps more
convincing than the "one point" concrete BUGGYFIND
example. We have randomly generated a large

Table 7. Results of random permutations, number of k-error mutants for k > I (called higher
order mutants) and executed them on D,.

NUMBER OF Because the number of mutants produced by corn-
RANDOM NUMBER OF plex errors can grow combinatorially, it is hopeless

TEST CASES SIZE OF A VALUE OF F LIVE MUTANTS to try the complete mutation analysis on complex
10 UNIFORM FROM UNIFORM FROM 88 mutants, but it is possible to select mutants at

15.61 1 TO SIZE OF A random for execution on D,. Of more than 22.000
25 65 higher-order errors encountered, only 19 succeed
50 54 on D,. These 19 have been shown to be equivalent

100 54 to FIND. Indeed, we have yet to produce an incor-
1000 5 rect higher-order mutant which suceeds on D.'

As the data indicates, permutations give rather Conclusions
poor results compared with D,.

Our analysis with random data can be divided Our first conclusion is that systematically pur-
into two cases: runs in which the vectors were
drawn from poorly chosen intervals and runs in suing test data which distinguishes errors from a
which the vectors were chosen from a good interval given class of -rrors also yields "advice- to be

(-100,100). The results are described in Tables 8 used in generating test data for similar programs.
and 9. For instance, the examples above lead us to the

following principles for creating random or non-
random test data for Fortran-like programs which

Table 8. Results of random data from poorly chosen Intervals. manipulate arrays (i.e., programs in which array
values can also be used as array indices):

NUMBER OF RANGE OVER RANGE OVER (II Include cases in which array values are out-
RANDOM WHICH VECTOR WHICH SIZE VALUE NUMBER OF side the size of the array,.
VECTORS VALUES DRAWN OF A DRAWN OF F LIVE MUTANTS 12) Include cases in which array values are

10 1100.2001 [1.201 UNIFORM 28 negative.
10 1-200 -100] 11.20] FROM 28 (3) Include cases in which array values are re-
10 1-100 -90 f1 201 SIZE 25 peated.

OF (4) Include such degenerate cases as D,'s A = 10)
VECTOR and A = (-5.-5.-5.-5).

Principle (4) was also noticed by Goodenough and
Table 9. Results of random data drawn from I- 100.1001; Gerhart,'

other parameters as In Table 8. It is important that a testing strategy be con-
ducive to the formation of hypotheses about the

NUMBER OF way test data should be selected in future tasks.
RANDOM NUMBER OF Information transferred between programming tasks
VECTORS LIVE MUTANTS provides a source of "virtual resources" to be used

10 22 in subsequent work. Since the amount of available
50 17 resources is limited by economic and political

100 11 barriers, experience-which has the effect of expand-
1000 10 ing resources-takes on a special importance. It is.

40 COMPUTER
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6 C. V. Ramamoorthy, S. F. Ho. and W. T. Chen, "On
the Automated Generation of Program Test Data.~

Seemingly simple techniques can be IEEE Trans on Software Engineering. Vol. SE-2. No
quite sensitive via the coupling effect. 4. December 1976, pp. 293-300

7. C. A. R. Hoae. "Algorithms 65. FIND." CACM. Vol. 4,
No. 1. April 1961, pp, 321.

8. R. S. Boyer. B. Elspas. K. N. Levitt. "SELECT-A
System for Testing and Debugging Programs by

of course, helpful to have available such mechanical Symbolic Execution." Proc. International Conferenc.
aids as the mutation system, but as we have shown on Reliable Software, SIGPLAN Notices. Vol 10.
even in the absence of the appropriate statistical No. 6. June 1975. pp. 234-245

information, a programmer can be reasonably con-
fident that he is improving his test data selection
strategy.

A second conclusion is that until more general
strategies for systematic testing emerge, program-
mers are probably better off using the tools and
insights they have in great abundance. Instead of
guessing at deeply rooted sources of error, they
should use their specialized knowledge about the
most likely sources of error in their application.
We have tried to illustrate that seemingly simple
tests can be quite sensitive, via the coupling effect. Richard DeMlIlo has been an associate

The techniques we advocate here are hardly ever professor of computer science at the
general techniques. In a sense, they require one to Georgia Institute of Technology since
deal directly in the details of both coding and the 1976. During the four years prior
application-a notion that is certainly contrary to ib to that he was assistant professor of

currently popular methodologies for validating computer science at the University of
software. But we believe there is ample evidence in - A technical consultant to several
man's intellectual history that he does not solve ' government and research agencies and
important problems by viewing them from a dis- 1 , to private industry, he is interested
tance. In fact, there is an Alice In Wonderland in the theory of computing, programming languages.
quality to fields which claim they can solve other and programming methodology.
people's problems without knowing anything in DeMillo received the BA in mathematics from the

pt aCollege of St. Thomas. St. Paul. Minnesota. and the
particular about the problems. PhD in information and computer science from the

So. there is certainly no need to apologize for Georgia Institute of Technology. He is a member of
applying ad hoc strategies in program testing. A ACM. the American Mathematical Society, AAAS. and
programmer who considers his problems well and the Association for Symbolic Logic.
skillfully applies appropriate techniques to their
solution-regardless of where the techniques arise-
will succeed. U Richard J. Upton is an associate professor of computer

science at Yale University. A faculty member since 1973.
he pursues research interests in computational complexjt'
and in mathematical modeling of computer systems. He
is also a technical consultant to several government
agencies and to private industry.
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PROGRAM MUTATION: A NEW APPROACH TO PROGRAM TESTING

ABSTRACT

Unlike contemporary software validation methods, where the goal is to establish absol-

ute program correctness, program mutation is a testing method which has a less ambitious

but quite useful goal: to establish that a program is either correct or is 'radically'

incorrect. The basic concepts of program mutation are explained as well as how the

method is applied in building interactive program mutation systems which aid users in

establishing this goal. Also, the applications of program mutation as a software pro-

'ect management tool and as a tool for assessing the quality of procured software are

c'tert'iewed. A prototype mutation system for a non-trivial subset of FORTRAN has been

implemented and initial experience with this system is reported. A system for nearly

full ANSI FORTRAN is about half implemented and is expected to be ready by early Fall

iNTRODVCTIDN

Program testing is an inductive science which addresses the following fundamental ques-

If a program is correct on a finite number of test cases, is it correct in general?

Finite test data which implies general correctness is called adequate test data (004)

and since adequate test data cannot in general be derived algorithmically (003), program

testing cannot in general be deductive. Recently, pati: analysis (001,002,005,006) and

s~tmbclc exVcct ion (007,008) have emerged as methods which allow one to gain confidence

in one's test data's adequacy. Although as with any inductive science it is possible

to make false inferences with path analysis, the basic idea is undeniable: test data

which exercises all flowchart control paths of a program at least once must be better

than test data which does not.

it has been said (020) that from a scientific point of view program testing can hardly

be said to be in its infancy. The software engineering community, most notably the

program verification school, continue to point out that program testing is insufficient-

to guarantee prograr correctness (see (019) for an argument against program verificat-

ion). We agree. However, since program testing has been used in developing all soft-

ware that has ever solved any real problems, we must ask the following rather obvious

question:

Given that program testing, while not a perfect technique, has proved to be a very
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useful technique, how we can develop testing methodologies which have less than
perfection (absolute program correctness) as their goals yet still yield substantial
gains?

It is all too easy (and wrong) to take the popular viewpoint that program building is
a purely logical deductive activity to which program testing is unsuitable. Our view-
point is that program design and development is an empirical engineering activity for
which an inferential formalism has not yet been developed. However, it seems clear
that such a formalism is not entirely necessary if one is willing to accept that pro-
gramming is a human, inductive activity which may never be subject to complete formal-
ism.

In this paper we will describe an on-going research effort which is aimed at achieving
gains from program testing while not ensuring perfection. We call our testing method-
ology program mutation. Besides discussing the method, we will overview a prototype
system which implements the method and report our initial experiences with program
mutation. Moreover, unlike the deductive approaches to software reliability such as
program verification (009,010), program mutation provides quantitative information on
the status of software development. We will explain how this information can be used
effectively throughout a software project's management hierarchy. We will also explain
how it can be used as a quality measure for procured software.

THE PROGRAM MUTATION METHODOLOGY

It has been observed (011.022) that the vast majority of errors that remain in softwdre
once it has been tested and put into production tend not to be radical errors* but
rather are interacting combinations of simple errors. Indeed, there are many 'horror'
stories similar to the failure of a5 early Vangard missile launch because of a missing q
right parenthesis in a controlling program. So a reasonable goal of program testing
is to rule out all combinations of simple errors. That is, design a program testinc
method with the goal being that if a program passes the test then either:

1 The program is correct.

2 The program is radically incorrect.

Even this seems too ambitious if one attacks directly. First, given a program we must
be able to generate all of its simple errors. Assuming that his can be done, we next
must eliminate the simple errors and the complex errors which imanate from their cor-

__binations. Clearly the number of complex errors will be a ccabinatorial explosion in
the number of simple errors. While it may be feasible to eliminate all simple errors,
explicit elimination of all complex errors appears intractable.

The goal of the program mutation testing methodology is to establish that a given pro-
gram is either correct or radically incorrect. Let L be the programming language under
consideration. A mutant operator is a simple program transformation, dependent cn L
which produces mutant programs of a qiven program P. The mutants are also pro-ra-s 'n

There are no agreed on technical definitions of error categories. We t,, - . ! be inf, rr I-.,- I,: -
ical we mean errors due to grossly misunderstanding the program specifictions. Errors rc
difficult if not impossible to capture by general algorithmic methods but which would easli, DC o:-
served by almost any test or when the software is first put into production. An examn)ie wot.c1 L',
forgetting to include an action sequence in a decision table program,
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z. For example, if

I = i~l

is a statement in P, then

z = z+2

1 = +O (i e a no-op)

are all simple changes which lead to three mutants of P. The goal of the mutant oper-

ator is to introduce simple errors in P, thus producing mutants of P. AlternatJvely,

if P is incorrect due to a single simple error, some mutant would be a correct prograr

for the given task. There should be several mutant operators, each correspondint; t,,

different classes of s imp to err,,r5 that mly occur in I.. ltI M ( ) denot - ih,. cIIc ,'f

.1I mutants of P. Ide.,i y, M()') shcculh contn i Silt Ant !i (t ccc, res|con tn t) a I L ,it| ,,, 

thc possible simple er i(rs. liwt,evex , this is too ambitiotns a al for (I enterat puils,

program transformations and we relax the requirement to be that M(P) covers all simpl,

errors in the sense that (P) may also contain mutants which are equivalent to I,. k,.

let Mp(P) denote all the mutants of P which come from multiple applications of mutarl!

operators on P. Tnese mutants are also programs in L.

Let D be the input domain of P. P is said to pass the mutation test with data T if

there exists T a subset of D such that:

" P works as intended on 7

" For each mutant m in M(P) either

- x fails to work as intended on T, or

- m is equivalent to r.

If P passes the mutant test then we are sure that P is free of simple errors. But what

of complex errors? To this end we have observed a coupling effect which states:

'Vost alta T which -auses all tho non-equivalent mutants of M(r) ti fail is sc s,r, : -

tive that all the ncn-eiuivalt-nt mutants oif M*(NI) must also fail on .

The Justification of the coupling effect parallels the probabalistic argument for

,ustifying the single fault methods used to test circuits (021). However, we have

no theory to make it a hard-fast principle. Basically, if several simple errors (de-

tectable by T) combine to make a complex error then it is extremely unlikely the simple

errors will cancel to allow the successful execution on T of the mutant containing the

complex error. The goal of program mutation theory is then to validate, depending on

either deductively or experimentally, the coupling effect for language L by establish-

ing the following metatheorem of program mutation:

e If P passes the mutation test then either

- P is correct, or

- P is radically incorrect.

It is not hard to see that if the metatheorem holds for language L and if P is a non-

radically incorrect program, then it is impossible for P to pass the mutation test.

In (017) the mutation metatheorem has been formally shown to hold where L is certain

classes of decision tables and the mutant operator involves the reformulation of conditions
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- and applied actions. Currently, programs which manipulate data structures are under

investigation.

- For general purpose programmaing languages such as FORTRAN, the task is more difficult.

There is a noticeable lack of empirical studies on progranmming errors to draw on in

formulatinj a complete set of mutant operators - a necessary requirement for program

mutation to be deductive. Here, complete means that all simple errors will be captured

in 14(P). Hence, at least for now, in the case of general purpose languages we can con-

sider program mutation to be an inductive tool for gaining confidence that the mete-

theorem of program mutation holds for a particular program P. A prototype system for

a subset of FORTRAN will be overviewed below. Some initial experience with it, tne

effectiveness of the implemented mutant operators and substantiations of the coupling

effect can be found in (013). A mutation system for nearly full ANSI FORTRAN has been

designed and is about half written. Several experiments to finding 'good' mutant oper-

ators and for evaluating the effectiveness of mutation testing are under consideration.

PROGRAM MUTATION APPLIED

We do not intend that program mutation can be effectively used by the novice programmer.

Rather (unlike previous software reliability methods) in program mutation we are making

and exploiting the following assumption:

Experienced programmers write programs which are either correct or are 'almost'

correct.

That is, in the mutation terminology:

If a program is not correct, then it is a 'mutant' - it differs from a correct pro-

gram by simple well-understood errors.

There is empirical evidence which supports this natural premise (011,022).

In order that it be feasible to perform the mutation test, the size of Mi(P) and T must

be small. Our view is that the mutation system should be interactive. The user speci-

fies the program P and initial test data 71 to the system whence the mutant operators

are applied to P, thereby generating the mutants of P. The mutants are then executed

on T 1. A list of mutants which fail and which succeed on T1 is produced. If all mut-

ants give incorrect results then, by the coupling effect and the experienced programmer

assumption, it is very likely that P is correct. On the other hand, if some mutants

are correct on 71, then the user must then examine the results of the mutation run to

determine:

* P contains a non-radical error

mented to T2 and the system re-run

* Some mutants are equivalent to p. Currently, this must be done manually but there

is hope that symbolic execution techniques can partially automate this task.

Thia cycle can be viewed as a series of interactive sessions in which the user defends

P and the cjrrent test data against a system adversary which asks questions of the formt
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Why does your test data not distinguish this simple error?

Such an adversary forces the user of program mutation into a careful and detailed re-

view of his program and the design decis'ions made in constructing it. The Issues which

the user must address include:

" Which mutant operators should be applied to the program?

" Are the program and its mutants correct on the given test data?

" Is a given mutant equivalent to the program?

In this view we hold hope that even radical errors can be uncovered by users of program

mutation.

OTHER APPLICATIONS OF PROGRAM MUTATION

Several approaches to aid in the design, implementation and debugging of large-scale

software have recently emerged. Examples are restricted modularization, structured

prcramming, and program verification. However helpful they may be to programmers an~d

low-level managers, the effects of these techniques cannot be utilized throughout the

project management hierarchy since they are qualitative rather than quantitative; man-

agers should not be expected to understand code and/or sophisticated mathematics.

besides being a tool for determing adequate test data, program mutation also provides

the type of information that managers need to monitor software development and personnel

performance. By using an automated program mutation system with report generation cap-

ability, during software development managers may extract information such as:

" mutant failure percentages for each module indicating how close the software is to

beinq acceptable

" Who is responsible for classifying which mutants as equivalent

" Which mutants have yet to fail.

This quantitative information can be used in several ways at different levels in the

management hierarchy. Among these are:

" Re-assignment of personnel to work on modules where the mutant failure rate is low

" Pinpointing responsibility for modules which fail after having been deemed accept-

able

" Forced 
justification 

of why certain 
equivalent 

mutants exist

* Rewarding personnel who achieve high mutant failure percentages.

See (023) for a description of how program mutation can be integrated with the chief

programner management concept.

Government agencies and profit making industries are currently finding that purchasing

11 3



15b

software from~ specialized software vendors is more economical than in-house development.

The contracts qenerally consist of the specifications for the software and a date on

which the software and test data on which the software meets the specifications are to

be delivered. Occasionally, some test data is given with the specifications. Two

problems for the contractor are apparent in this scheme:

0 At any time during the contract period the purchaser has no indication as to howe

'close' the software is to being ready

o Upon delivery, although the software works correctly on the supplied test data,

there is no way to measure the quality of the purchased software.

We see program mutation as a partial solution to the first problem and as a definite

solution to the second.

Since program testing is the final stage of software development, a contractor can

specify that the vendor indicates at what point testing commences. Assuming that the

vendor is using a mutation system, the contractor can monitor the final stage of devel-

opment by having the vendor periodically report mutant elimination percentages.

To evaluate the delivered software, one can specify in contracts that the test data

of modules must eliminate a certain percentage of the mutants with respect to 'standard'

- mutant operators. Here there are many options. Software not passing this quality test

may be rejected or there could be a substantial financial penalty to the vendor. In

this case it is not essential that the vendor uses a mutation system, only that the con-

tractor has one available to evaluate the final product. Also, note that the contractcr

is not concerned with equivalent mutants; rather, a simple test (which can be entirely

computerized) dependent solely on the mutant operators is used, Currently, we have

little information on which mutant operators should be employed in this test, however,

experiments to answer this question are in progress.

THE PROTOTYPE FORTRAN MUTATION SYSTEM

A prototype mutation system for a large subset of FORTRAN has been implemented as an

interactive system on the PDP-lO. See (018) for a more detailed description than the
following. We chose FORTRAN as the source language in our first implementation of a

mutation system since there is a large body of existing programs on which we can experi-

ment. However, the methodology is language-independent - mutation systems for other

languages are in the design stage.

The programs considered are FORTRAN subroutines with the following data types and

statement types:

* Integer constants and variable
o one and two dimensional arrays

o GOTO statementE
e CON(TIN4UE statements

9 ASSIGNMENT statements with general arithmetic expressions

a RETRURN statements

a Logical IF statements with general relational and logical expressions

a D0 loops with one level of embedding.
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The mutant operators which the system can apply to a program fall into four categ yF.r1(

* Declaration mutations. There are mutant operators to insert default array limits

and to permute the limits of two-dimensional arrays.

a Data reference mutations. Data references are instances of constants, scalar var-

iables, and references to one and two-dimensional arrays in the statements of the

proqram. There are mutant operators to replace any data reference by any other

reference in the program as well as an operator to replace conztants by other con-

stants not necessarily appearing in the program. Also, there is an operator to per- -

mute the index expressions of references to two-dimensional arrays.

* Operator evaluation mutatioon. There are mutant operators to replace occurren,.,

of arithmetic operators in the program by all the other arithmetj o ratr.. I1.i

a e rmdtant operators to do likewise for relational and loiodl olperato:_.

"*ccntrol mutations. There are mutant operators to replace the label portion of GO!'

statements by each of the other statement labels appearing in the program. Als,

there are mutant operators to see if all control paths of the program are travers!'

at least once, to force DO loops to end on continue statements, to force DO loops

net to end on continue statements and to replace each statement of the proarar by i

return statement.

As discussed above, these operators are designed to capture simple errors and to assesf

the adequacy of the given test data to distinguish them. For example, in making an

array have dimension, one checks whether the test data is causing the array to be acc-

essed other than as a scalar.

The user specifies to the system his program, test data, and the mutant operators he

wishes to be applied. The system then generates and executes the mutants on the test

data and produces a report indicating which mutants are correct and which fail or the

a :,ee test data. various profiles and other useful information are also reported. A:

exiai-lc of the report produced by the system is given in the appendix. The det rL': -

nt:>-n of mutant correctness or failure is done in one of two ways:

* by direct comparison of the mutant output with the program's output

* 9, a user supplied algorithm which examines the output of the mutant.

Tn both cases the system asks the user whether or not the program is acceptable on thc

test data. However, determination of mutant failure is done by the system.

Upon examining the report, the user may re-run the system and augment his test data in

an attempt to make the remaining mutants fail. He may also specify that additional

rntant operators be applied to the program. The system produces another report of thc

:;aMe nature as the first for the user to examine. This cycle continues until the user is

satisfied that his current test data adequately tests his program or until an error in

the program is discovered.

The prototype FORTRAN system heavily uses the PDP-IO file system to record transient

information such as mutant correctness status and the current test data between runs.

In spite of the fact that the program terminates on the test data, some mutants may

ctually be non-terminating. To handle this the system records the program's execution

time for each test case and deems that a mutant has failed due to being non-terminatino

if the mutant has not terminated within a factor of the program's execution time.

I
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Experience has shown that a factor of 10 is reasonable.

SOME INITIAL EXPERIENCES WITH PROGRAM MUTATION

The results of using the prototype FORTRAN mutation system on three programs are now

described. The first is Hoare's FIND program (014) which, given an integer array A,

of dimension N and an array index F, rearranges A such that A(l)-A(F-l) are no greater

than A(F) and A(F+l)-A(N) are no less than A(F). The second is the Knuth, Morris, and

Pratt PAT program (015,016) which, given two arrays of integers, decides whether the

first array occurs in the second. The third, SCAN, is the scanner used in the prototype

system itself.

For all three programs, the testing strategy was the following. we first constructed

what we believed would be good test data for the programs independently of the mutation

system. The program and this initial test data were input to the system with all imple-

mented mutant operators in effect. The results of these initial runs are summarised

- in Figure 1.

EXECUTABLE NUMBER OF NUMBER OF PERCENTAGE OF IN-
PROGRAM STATEMENTS TEST CASES MUTANTS CORRECT MUTANTS

FIND 34 24 758 92-2

PAT 42 9 1178 77-2

SCAN 104 19 8838 89-1

Figure 1: Initial mutation run

We then made mutation runs with augmented test data until all mutants either failed on~

some test case or were determined equivalent. The final results are shown in Figure 2.

PROGRAM NUMBER OF RUNS NUMBER OF TEST CASES iOF INCORRECT MUTANTS

FIND 8 49 98.1

PAT 9 35 98-7

SCAN 7 35 97.9

Figure 2: Initial Mutation run

In comparing the mutant elimination percentages of Figure I to Figure 2, we can demcrns-

trate one reason why program testing as an art has been held in such low estcem:

With all three programs, even after hard thought, our initial test data failed tQ

distinguish a large number of incorrect mutants.

Although the initial mutant elimination percentages in Figure I seem adequate, correl-

ated with Figure 2, we see that the initial test data failed to distinguish 44 incorrect

mutants of FIND, 253 incorrect mutants of PAT, and 778 incorrect mutants of SCAN. The

final mutant report for SCAN appears in the appendix.

with F fixed at 3 for the initial data. Permutations are a reasonable test of programs

like FIND but they fail to distinguish all mutants (see (013)). Higher dimensioned

permutations do no better. we have run 1000 uniformly drawn random permutations of sizes

It
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5 and 6 as test data for FIND and they failed to distinguish 39 incorrect mutants Of

FIND. The reason is permutations Of A are legal FORTRAN indices Of A and not until

negative data is used do these mutants of FIND fail. This is analogous to mixing

pointers and the values pointed at which is a conmmon programing blunder. The insight

gained is that test data for pointer type programs should be constructed so that values

pointed at are not legal pointers. See (013) for other such insights for test data-

selection that have been gained from program mutation as well as for a more detailed

discussion on the pitfalls of using random test data.

Figures 1 and 2 suggest that 2% might be a good estimate for the expected number of

equivalent mutants that a program will have, at least for the mutant operators imple-

mented in the prototype FORTRAN mutation system. If one accepts this estimate, then

eliminating better than (say) 97% of all mutants without trying to determine equivalent

mutants allows one to gain high confidence in test data adequacy.

Another observation is that the number of mutants of a program appears bounded by Cn

where n is the number of statements in the program and c<l. This compares favourably

with other methodologies for achieving reliable software which all seem to have inher-

ent exponential growth factors. In fact, the unclever prototype FORTRAN mutation system-

took 90 minutes of CPU time on the PDP-10 KA-10 processor to run the 8838 mutants of

the 104 statement scanner program. The KA-10 is 5 times slower than the IBM 370/158

and 30 times slower than the CDC 7600. Because our system is CPU bound, the 90 minutes

of CPU time scales down directly to 18 and 3 minutes on these faster machines.

We are currently working on a 300-line auditing program taken from a production environ-

ment. We see no reason why any FORTRAN module cannot be tested on a mutation system

within acceptable cost-effective CPU times.

CONCLUSIONS

Program mutation is an engineering approach to program testing where the goal is to

establish that a program is either correct or is radically incorrect. The method is

based on the coupling effect: simple mutations are sufficient to distinguish complex
mutations. Initial experience has suggested the validity of the coupling effect.

The effectiveness of program mutation depends on two factors:

" Human judgement

" The implemented mutant operators.

In the former case we have suggested how mutation systems can be designed to aid users

in meeting the goals of program mutation. In the latter case we are currently running

experiments to evaluate the mutant operators implemented in the prototype system and

to develop 'good' mutant operators for future mutation systems.
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APPENDIX

MUTATION STATUS REPORT SCAN.F4 23-Oct-77

LISTING OF THE PROGRAM BEING MUTATED

I SUBROUTINE SCAN(RECORD.N.TYPE,KIND.IDEOL.IVAL.COLUMN)

2 C

3 C 1. SCAN THE RECORD, STARTING AT LOCATION N AND RETURN THE NEXT

4 C IDENTIFIER. CONSTANT OR SYMBOL.

SC

6 C 2. RECORD IS AN 80 WORD ARRAY. ASSUMED 1 CHAR TO A WORD. N IS

7 C LOCATION TO START SCAN. ON RETURN N POINTS TO LAST LOC

8 C SCANNED + 1.

9 C

10 C 3. RETURNS INFORMATION IN COMMON/SCANNER/

11 C TYPE - TYPE OF OBJECT FOUND (SEE SCANER.PAR)

12 C KIND - SUBCLASS OF TYPE

13 C ID(2)- CHARACTER FORM OF IDENTIFIER FOUND, PADDED WITH

14 C BLANKS

15 C EOL - SET TRUE IF END OF LINE WAS FOUND BEFORE A CHAR

16 C WAS

17 C IVAL - INTEGER VALUE FGJND

18 C COLUMN - COLUMN IN WHICH LOCATED OBJECT BEGAN

19 C

20 C INTERNAL VARIABLES USED

21 C CH - CURRENT CHARACTER

22 C K - LOOP COUNTER

23 C IDB - UNPACKED ID BUFFER

24 C LOG - SYMBOLIC LOGICAL OPERATORS

25 C LTYPE- TYPE FOR EACH OF THE ABOVE

26 C LKIND- KIND FOR EACH OF THE ABOVE

27 C SYMC - CHARACTER CODE FOR SYMBOLS TO BE RECOGNIZED

28 C STYPE- TYPE FOR EACH OF THE ABOVE

29 C SKIND- KIND FOR EACH OF THE ABOVE

30 C

31 C 4. NONE

32 C

33 C 5. NONE

34 C

- 35 C 6. TRAPON TO TRAP INTEGER OVERFLOWS.

36 C

37 C 7. ENCODE TO PACK IDENTIFIER

38 C LINE 32- ASSUMES CHAR NUMBER - CHAR/2**29

39 C

40 C 8. ASSUMES 5 CHARACTERS TO A WORD

41 C

42 C 9. NONE

43 C

44 C 10. TIM BUDD, JULY 29, 1977

45 C

46 C 11.

47 C

48 C 12.

120
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49 C

50 C

51 C INCLUDE 'SCANER.PAR/NOLIST'

52 C * TESTED BY MANUALLY CHANGING PARAMETERS IN BODY OF CODE

53 C

54 C

55 C PARAMETER SPACE-IH, A=IHA,Z-INZ.C
o
=
IH O

,C9
g =

H9
'
PERIOD

= IH
.,

56 C * STAR=IH*

57 C * ALSO TESTED AS ABOVE

58 C

59 C

60 INTEGEP N.RECORD(12)

61 C

62 C INCLUDE 'SCANER.COM/NOLIST'

63 C * TESTED BY MAKING INTO PARAMETERS

64 INTEGER TYPE,KINDID(
2
),EOL,IVAL,COLUMN

65 C

66 C

67 C

6S INTEGER CH,K,1DB(10),SYMC(8),

69 * STYPE(8),SKIND(8)

7: C

71 C * DATA STATEMENTS SIMULATED BY ASSIGNMENTS

72 C DATA SYMC/ (' )/ .... /,STYPE/ LPARN,RPARN

73 ' * COMMA.BECOMS,2*ADDOP.MULOP,APOST /,SKIND/ 4*NOKIND,PLUS,

74 C MINUS,DIVIDE,NOKIND/

75 SYMC(1) = 40

76 SYMC(2) 
=  

41

77 SYMC(3) = 44 
-

78 SYMC(4) 61

SYMC(5) 43

- SYMC(6) 45

s1 SYMC(7) 47

82 SYMC(8) 96

83 STYPE(1) 4

84 STYPE(2) 9

85 STYPE(3) 8

86 STYPE(4) 10

E7 STYPE 5' 5

88 STYPE(6) 5

89 STYPE(7) 6

9^ STYPE(8) 15

9i SKIND(1) 1

92 SKIND(2) 1

93 SKIND(3) 1 I

94 SKIND(4) I

95 SKIND(5) 2

E SKIND(6) 3

97 SKIND(7) 5

91, SKIND(8) 1

10 0 ---------------------------------------------
------------------------.

101 TYPE 1 

-

1G2 KIND I

121
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103 ID(1) 32
104 10(2) - 32

105 EOL - 0

106 IVAL - 0

107 C
108 C SKIP OVER LEADING SPACES

109 C

110 10 IF (N.GE.13) GOTO 110
111 IF (RECORO(N).NE.32) GOTO 20

112 N - N + 1

113 GOTO 10

114 C
115 C NOW HAVE NON-NULL CHAR

.116 C

117 20 CH - RECORD(N)
118 COLUMN - N

119 C

120 C READ AN IDENTIFIER .................................................

121 C
122 IF ((CH.LT.65 ).OR.(CH.GT.90 )) GOTO 30
123 K = 0
124 22 IF (K.GE.10) GOTO 23

125 K = K + 1

126 IOB(K) = CH

127 23 N - N + 1
128 IF (N.LT.13) GOTO 24
129 CH - 64

130 GOTO 25

131 24 CH - RECORD(Nq

132 25 IF (((CH.GE.64 ).AND.(CH.LE.90 )).OR.
L. 133 * ((CH.GE.48 ).AND.(CH.LE.57 )))

134 * GOTO 22

135 C PAD WITH BLANKS

136 26 IF (K.GE.10) GOTO 28

137 K - K + 1
138 IDB(K) - 64

139 GOTO 26

140 C 28 ENCODE(10,999.ID) IDB

141 28 DO 29 K-1.5
la 142 ID(1) = ID(1) * 10 + IDB(K)

143 29 ID(2) - ID(2) * 10 + IDB(K+5)

144 TYPE - 2
145 GOTO 90

146 C

147 C READ A NUMBER -----------------------------------------------------

148 C
149 30 IF ((CH.LT.48 ).OR.(CH.GT.57 )) GOTO 40
150 32 IVAL - IVAL * 10 + (CH - 48 )
151 N - N + 1

6w 152 IF (N.EQ.13) GOTO 34

153 CH - RECORD(N)
154 IF ((CH.GE.48 ).AND.(CH.LE.57 )) GOTO 32
155 34 TYPE - 3

156 GOTO 90

L •,
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157 C

158 C READ A PERIOD (OR A LOGICAL EXPR) ---------------------------------

159 C

160 40 IF (CH.NE.46 ) GOTO 50
161 TYPE - 16

162 GOTO 90

163 C

164 C READ A STAR -------------------------------------------------------

165 C

166 50 IF (CH.NE.42 ) GOTO 60 "

167 TYPE - 6

168 KIND - 4

169 N N + 1

170 IF (N.EQ.13) GOTO 90

171 CH - RECORD(N)

172 IF (CH.NE.42 ) GOTO 90
173 N = N 1

174 TYPE 7

175 KIND 1

176 GOTO 90

177 C
178 C READ + - - -- -- -

179 C 1
180 60 DO 62 K-1.8

181 62 IF (CH.EQ.SYMC(K)) GOTO 64

182 C FALL THROUGH LOOP -> SYMBOL ERROR

183 GOTO 120

184 64 TYPE = STYPE(K)

185 KIND = SKIND(K) "

186 N = N + 1

187 C GOTO 90

188 C
189 C CORRECT EXIT POINT

190 C

191 90 RETURN

192 C

193 C

194 C ERRORS-

195 C ERROR 110. END OF LINE 1
196 110 EOL - 1

197 COLUMN - 13
198 GOTO 90

199 C

200 C ERROR 120, INVALID SEQUENCE OF SYMBOLS

201 120 GOTO 90

202 END

203

123
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CLASSIFICATION OF THE PROGRAM'S FORMAL PARAMETERS

STRICTLY OUTPUT PARAMETERS

TYPE KIND ID EOL IVAL COLUMN

INPUT AND OUTPUT PARAMETERS

N

READ ONLY INPUT PARAMETERS

RECORD

THE METHOD OF DETERMINING MUTANT CORRECTNESS IS

BY COMPARISON TO THE PROGRAM
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THE PIMS RUN TITLE

BEFORE THIS RUN THERE WERE 6 PIMS RUNS ON THIS PROGRAM

8838 MUTANTS WERE CREATED DURING THOSE RUNS

0 NEW MUTANTS WERE CREATED DURING THIS RUN

FOR A GRAND TOTAL OF 8838 MUTANTS

-q
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MUTANT'S STATUS BEFORE THIS RUN

A TOTAL OF 29 TEST CASES

A TOTAL OF 8838 MUTANTS

OF THESE 206 ARE STILL ALIVE

THERE ARE 104 PROGRAM STATEMENTS.

GIVING 84.98 MUTANTS PER STATEMENT

MUTANT PROFILE

ARRAY LIMIT DEFAULT INSERTION 6 0

SCALAR VARIABLE REPLACEMENT 539 2

SCALAR VAR FOR CONSTANT REPLMT 872 34

CONSTANT FOR SCALAR VAR REPLMT 1320 0

COMPARABLE ARRAY NAME REPLMT 210 0

CONST FOR ARRAY REF REPLACEMENT 360 0

SCALAR VAR FOR ARR REF REPLMT 336 0

ARRAY REF FOR CONST REPLACEMNT 2368 111

ARR REF FOR SCALAR VAR REPLMT 2016 12

ARITHMETIC OPERATOR REPLACEMNT 64 0

RELATIONAL OPERATOR REPLACEMNT 105 15

LOGICAL CONNECTOR REPLACEMENT 6 0

GOTO LABEL REPLACEMENT 427 21

PATH ANALYSIS 104 0

CONTINUE STATEMENT INSERTION 2 2

RETURN STATEMENT INSERTION 103 9

THE PERCENTAGE OF ELIMINATED MUTANTS IS 97.67

THE ELIMINATION PROFILE FOR ALL MUTANTS IS

TYPE OF ELIMINATION NUMBER OF ELIMINATED MUTANTS

TIMED-OUT 310

REFERENCED AN UNDEFINED VARIABLE 2034

SUBSCRIPT RANGE ERROR 1071

DIVIDED BY ZERO 0

ARITHMETIC OVERFLOW OR UNDERFLOW 63

WROTE A READ ONLY VARIABLE 58

EXECUTED A TRAP STATEMENT 104

PRODUCED WRONG ANSWERS 4992

126 -



De#illo et al

28

MUTANT STATUS AFTER THIS RUN

A TOTAL OF 35 TEST CASES

A TOTAL OF 8838 MUTANTS

OF THESE 190 ARE STILL ALIVE

THERE ARE 104 PROGRAM STATEMENTS,

GIVING 84-98 MUTANTS PER STATEMENT

MUTANT PROFILE

ARRAY LIMIT DEFAULT INSERTION 6 0

SCALAR VARIABLE REPLACEMENT 539 2

SCALAR VAR FOR CONSTANT REPLMT 872 33

CONSTANT FOR SCALAR VAR REPLMT 1320 0

COMPARABLE ARRAY NAME REPLMT 210 0

CONST FOR ARRAY REF REPLACEMNT 360 0

SCALAR VAR FOR ARR REF REPLMT 336 0

ARRAY REF FOR CONST REPLACEMNT 2368 ill

ARR REF FOR SCALAR VAR REPLMT 2016 12

ARITHMETIC OPERATOR REPLACEMNT 64 0

RELATIONAL OPERATOR REPLACEMNT 105 6

LOGICAL CONNECTOR REPLACEMENT 6 0

GOTO LABEL REPLACEMENT 427 15

PATH ANALYSIS 104 0

CONTINUE STATEMENT INSERTION 2 2

RETURN STATEMENT INSERTION 103 9

THE PERCENTAGE OF ELIMINATED MUTANTS IS 97.85

THE ELIMINATION PROFILE FOR ALL MUTANTS IS

TYPE OF ELIMINATION NUMBER OF ELIMINATED MUTANTS

TIMED-OUT 310

REFERENCED AN UNDEFINED VARIABLE 2035

SUBSCRIPT RANGE ERROR 1073

DIVIDED BY ZERO 0

ARITHMETIC OVERFLOW OR UNDERFLOW 63

WROTE A READ ONLY VARIABLE 58

EXECUTED A TRAP STATEMENT 104

PRODUCED WRONG ANSWERS 5005
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ABSTRA CT

A New type of software test is introduced, called mutation
analysis. A method for applying mutation analysis is described,
and the results of several experiments to determine its
effectiveness are given. Finally it is shown bow mutation analysis
can subsume or augment many of the more traditional program
testing techniques.

1. Lntroduction

Traditionally, program testing has been an ad hoc technique done
by all programmers: the programmer creates test data which he intui-
tively feels captures the salient features of the program, observes the
program in execution on the data, and if the program works on the
data (i.e., passes his test) he then concludes the program is correct.
Just as most programmers have tested programs in this manner, most
programmers have also deemed to be correct programs which were
indeed incorrect.

Modern testing techniques attempt to augment the programmer's
intuition by providing quantitative Information on how well a program
is being tested by the given test data. Certainly the sheer number of
test cases is not sufficient to significantly increase our confidence in
the correct functioning of a program. If all the test cases exercise the
program in roughly the same way then nothing has been gained over a
smaller number of executions. The key idea of modern testing tech-
niques is to exercise the program under a variety of different cir-
cumstances, thereby giving the programmer a greater confidence in
the correct functioning of the software component.



Several popular testing techniques use an idea called covering
measure. Examples of covering mneasures are: the number of state-
ments executed, number of branch outcomes taken, or the number of
paths traversed by the test cases. Test data with high coverage meas-
ures then exercise the program more throughly (according the the cri-
terion) then ones with low measure.

In this paper we will discuss a new type of testing method, pro-
gram mutation, which differs significanitly from those previously men-
tioned. Numerous theoretical and empirical studies [1.2,4,5] indicate

- that data satisfying this test criterion often perform significantly
better in discovering errors and validating programs then data satisfy-
ing .other criterion. In many cases, the new test will actually subsume
the goals which have been earlier investigated.

2. Description of the Method

Mutation analysis starts with one important assumption which is
surprisingly not often recognized:

exper-ienced programmers write programs which are either
correct or are almost correct.

(one manifestation of this is the common programmers joke that the
code is always '90%" finished.)

The mutation method can be explained as follows: Given a program
P which performs correctly on some test data T. subject the program
to a series of mutant operators, thereby producing mutant programs
which differ from P in very simple ways. For example. if

I1=I+I

is a statement in P. then

I=-
I1+2
I=3+

are all simple changes which lead to three mutants of P.

The mutant programs are then executed on T. If each mutant pro-
- gram produces an answer which differs from the original on at least

one test case, then the mutation test for P is passed. If, as is more
likely, some of the mutants produce the same answers as the original
program on all the test cases submitted, then either

1) the mutant programs are equivalent to P

2) the test data T is inadequate for passing the mutation test and
must be augmented.
In this case the original program must then be examined with the

list of live mutants in order to derive test data on which some or all of
the remaining mutants will fail. The degree of testing is then measured
in terms of the number (or percentage) of mutants which have been
eliminated by the test data.

As an intuitive aid one can think of the mutation system as pro-
posing alternatives to the given program and asking the programmer
for reasons, in the form of test cases, as to why the alteratives are not
just as effective as the original program in solving the given task. This

- then insures that the program is correct relative to small perturba-
tions in its structure.
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At first glance, however, it would appear that a program and test
data which passed this test might still contain some complex errors
which are not explicitly mutations of P. To this end there is a cntUpling
effect which states:

test data on which all simriple mutants fail is so sensitivge to
changes in the program that it is highly likely that all comrplex
mutants must also fail

By complex mutant we mean the transformation which takes the
original incorrect program into the presumed correct version. Since
therefore any such correct program will be differentiated from P, if P
truly executed correctly on T there can be no complex mutants, hence
Pis correct.

Several experiments substantiating the coupling effect have been
conducted[A,41. Some of these will be described in the following sec-
tions. The DAVE group [15,167 at the university of Colorado have also
observed that the ability to detect simple errors is often useful in
insuring against quite complex errors. The types of simple errors con-
sidered in mutation analysis is, however, much more extensive then
that considered by DAVE.

Constant Replacement (± 1)
Scalar for Constant Replacement
Source Constant Replacement
Array Reference for Constant Replacement
Scalar Variable Replacement
Constant for Scalar Replacement
Array Reference for Scalar Replacement
Comparable Array Name Replacement
Constant for Array Reference Replacement
Scalar for Array Reference Replacement
Array Reference for Array Reference Replacement
Arithmetic Operator Replacement
Reliatianal Operator Replacement
Logical Connector Replacement
Unary Operator Removal
Unary Operator Replacement
Unary Operator Insertion
Statement Analysis
Statement Deletion
Return Statement Replacement
Goto Statement Replacement
Do Statement Replacement

figure I

3. The System
A system has been constructed which performs mutation analysis

on sets of subroutines written in ANSI FORTRAN. The system is interac-
tive and iterative, so that the user presents the system with a program
and an initia! test set. After constructing and executing each mutant
serially the system responds with summaries and reports on the
number and type of mutants which remain (i.e. which produced the
same result as the orig~nal program.) The user can then augment the
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test data set and reexecute the remarinmg mutants on the new test
cases. This process can continue until the desired level of testing is
attained.

The mutant operators used in the current system are shown in
figure 1. The names are fairly self explanatory: for example, the three
mutations given in section 2 are produced by arithmetic operator
replacement, constant replacement, and scalar variable replacement,
respectively.

Various versions of the mutation system have been in operation
for about two years 12], and in that period numerous experiments have
been qonducted investigating the coupling effect and the utility of the
tool for program development and testing [5]. The next section details
some experiments performed which substantiate the coupling effect.

4. The Coupling Effect
We have already reported on an experiment [4] involving Hoare's

FIND program [9] that supplied empirical evidence for the coupling
effect. The experiment went as follows:
(1) We derived a test data set T of 49 cases to pass the mutation test.

(The large size of T was due to our inexperience.)

(2) For efficiency reasons, we reduced T heuristically to a test data
set T' consisting of seven cases on which FIND also passed the
mutant test.

(3) Random k-order mutants of FIND, k>1, were generateu. (A k-order
mutant comes from k applications of mutant operators on the
program P.)

(4) The k-order mutants of FIND were then executed on T'.

The coupling effect says that the non-equivalent k-order mutants of
FIND will fail on T'. Note that step 2 biases the experiment against the
coupling effect since it removes the man-machine orientation of our
approach to testing. We would have been quite happy to find a coun-
terexample to the coupling effect for the mutation system, since it
would have allowed us to improve the set of mutant operators. The
results of the experiment, though. gave evidence that we had chosen a
well coupled set of mutant operators for the pilot system:

K Number of k- order mutants Number successfuL on T'
2 21100 19
>2 1500 0

The 19 successful mutants were shown to be equivalent to FIND. We
concentrated on the k=2 case since, intuitively, the more one mutates
FIND the more likely one is to get a program that violates the com-
petent programmer assumption.

The major criticism of the experiment concerns step 3. Since the
first-order mutants that compose the k-order mutants are indepen-
dently drawn, the resulting k-order mutant is likely to be very unstable
and subject to quick failure, in contrast to the more desirable case
where the k-order mutant contains subtly related changes that
correspond to the subtle errors programmers find so hard to detect.

The current experiment on the coupling effect omits step 2 above
and make the following important change to step 3:

- A '
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(3) Randomly generate correlated k-order mutants of the program. By
correlated we mean that each of the k applications of mutant
operators will in some way be related to all of the others -- they
could for instance effect the same statement of P. or the saint
variable name, or the same statement label, or the same constant.

Once again, if P passes the mutant test with test data T, the coupling

effect says that the correlated k-order mutants of P will fail on T.

For this experiment three programs are being used: FIND, STKS!M
and TRIANG. STKSIM is a program that maintains a stack and allows
the standard operations of clear, push, pop. and top. TRIANG is a pro
gram that, given the lengths of the three legs of a triangle, categorize,
the input as not representing a triangle or as representing a scalene,
isoceles or equilateral triangle [3]. The following is a summary of the
results of the experiment so far-

PROGRAM K=2 K=3 K=4
number successes number successes number successes

FIND 3000 2 3000 0 3000 0
STKSIM 3000 3 3000 0 3000 0
TRIANG 3000 1 3000 ,J 3000 0

In all cases, the successfu. correlated k-ocder mutants have been
shown to be equivalent to the original program.

We have yet to find a non-trivial counterexarnple to the coupling
effect for our FORTRAN systems. The one successful 3-order mutant of
TRIANG deserves closer examination; indeed, we initially felt that it wa'.
a non-equivalent mutant. The mutant is
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SUBROUTINE TRIANG(I.J, K,MATCH)
C

INTEGER I,J,KMATCH
C
C MATCH IS OUTPUT FROM THE ROUTINE
C IF MATCH = I THE TRIANGLE IS SCALENE
C IF MATCH = 2 THE TRIANGLE IS ISOSCELES
C IF MATCH = 3 THE TRIANGLE IS EQUILATERAL
C IF MATCH = 4 IT IS NOT A TRIANGLE
C

IF (I .LE. 0 .OR. J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH = 0
IF (I.NE. J) GOTO 10
MATCH = MATCH + 1

10 IF (I .NE. K) COTO 20
MATCH = MATCH + 2

MO t:change statement to MATCH = MATCH + K

20 IF (J .NE. K) GOTO 30
MATCH = MATCH + 3

30 IF (MATCH .NE. 0) GOTO 100
IF (I+J .LE. K) GOTO 500
IF (J+K .LE. 1) GOTO 500
IF (I+K .LE. J) GOTO 500
MATCH = 1
RETURN

100 IF (MATCH .NE. 1) GOTO 200
IF (I+I .LE. K) GOTO 500

110 MATCH= 2
RETURN

200 IF (MATCH .NE. 2) GOTO 300

M0 2: change statement to IF (MATCH .NE. K)

IF (I+K .LE. J) GOTO 500
GOTO 110

300 IF (MATCH .NE. 3) GOTO 400
IF (J+K .LE. I) GOTO 500

MO3 : change statement to IF (J+J .LE. I)

GOTO 110
400 MATCH = 3

RETURN
500 MATCH = 4

RETURN
END

Note that the correlation is with respect to the variable K. The mutant
operators MO 1 and MO2 produce incorrect mutants while MOs produces
a mutant equivalent to TRIANG. Yet the 3-order correlated mutant is
equivalent to TRIANG.

This makes a beautiful illustration of the part of the programming
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process that program mutation is trying to exploit. Using the constant
2 in the first two mutated statements is an arbitrary but coupled deci-
sion. Indeed, you can replace both instances of 2 by any positive con-
stant (or any variable whose value doesn't change between the execu-
tion of the two statements) and you get an equivalent program --

replace only one instance and you get an incorrect program. In a
sense, the constant 2 in those statements is what would be called in the
terminology of formal logic a "bound variable.'

5. An Analysis of How Mutation Works
In this section we will go through a detailed analyois concerning

how and why mutation analys; . car be exp~eted to uncover errors
under a wide variety of situations.

5.1. Trivial Errors
If one of the mutants considcrer is ,ndeed the r-orr''t p-ogran

then of course the error wiLU be discovered wieri an it'emipt LS made to
eliminate that particular mutant.. Alternativev if the error' in the ori-
ginal program act in a reasonably independent manner and each error
,s individually captured by a singlemu a'tation then the errors wil!
almost certainly be detected.

Given the vast folklore about large systems farl.ng for extremely
trivial reasons, the ability to detect such simple errors in indeed a
good starting place. However many errors do not correspond exa :tly to
the generated mutations, and multiple errors may interact in subtle
fashions. This being the case we must demonstrate that mutation
analysis possess many more powerful capabilities.

5.2. Statement Analysis
Many programming errors manifest themselves by sections of

code being "dead", that is unexecutable, when they shouldn't be. Also
many bugs are of such a serious nature that any data which executes
the particular statement in error will cause the program to give
incorrect results. These errors may persist for weeks or even years if
the error occurs in a rarely executed section of code.

Accordingly a reasonable first goal for a set of test cases is that
every statement in tbe program is to be executed at least once [12].

Various authors have presented methods to achieve this goal. Usu-
ally these methods involve the insertion of counters into the straight

line segments of code. When all counters register non-zero values every-
statement in the program has been executed at least once.

In Mutation analysis we take a different approach to the same
objective. If a statement is never executed then obviously any change
we produce in it will not cause the altered program to produce test
answers differing from the original. However as a means of directing
the programmers attention to these, errors in a more direct and unam-
biguous fashion a simpler approach is taken. Among the mutations
generated are ones which replace the first statement of every basic
block in turn with a call on a special routine which aborts whenever it
is executed. Obviously these mutations are extremely unstable, since
any data which executes the replac-ed stateiment will cause the mutant
to produce an incorrect resuLt, arid hence to be eliminated. The
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reverse, however. is also true. That is, if any of these mutants survive,
then the statement which the mutation altered has never been exe-
cuted. Hence an accounting of the survival of this class of mutations
gives important information about which sections of code have and
have not been executed.

Mutation Analysis goes even one step further. Some authors have
assumed that not executing a statement is equivalent t~o deleting it N5.
This is certainly not true. A statement can be exect-ted but still not
serve any useful purpose. In order to investigate this another class of
mutants generated replaces every statement with a CONTINUE state-
ment (a convenient FORTRAN NO-OP.) The survival or elimination of
these mutations gives mnore information then merely whether the
statement is executed or not, it indicates whether or not the state-
ment is performing anything useful. If a statement can be replaced by
a NO-OP with no effect then at best it indicates a waste of machine time
and at worst it is probably indicative of much more serious errors.

Merely being able to execute every statement in the program is no
guarantee that the code is correct [7,10]. Problems such as coincid-an-

'tal correctness or predicate errors may pass undetected even if the
statement in error is executed repeatedly. In subsequent sections we
will show how mutation analysis deals with these problems.

5.3. Branch Analysis
Some authors have pointed out [ 12] that an improvement over

statement analysis can be achieved by insuring that every flowchart
branch is executed at least once. For example the following program
segment

A;
IF (expression)

THEN B;
C;

has the flowchart shown in figure 2.

figure 2
All three statements A.B and C can be executed by a single test

case. It is not true, however, that in this case all branches have been
- executed. For example in this case the empty else clause branch (a)

has been ignored.
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We can state the requirement that every branch be taken in an
equivalent manner by requiring that every predicate expression must
evaluate both TRUE and FALSE. It is this formalization which is used in
mutation analysis.

Among the mutants generated are ones which replace each rela-
tional expression and each logical expression by the logical constants
TRUE and FALSE. Of course, like the statement analysis mutation,
these are very unstable and easily eliminated by almost. any data. But
if they survive they point directly and unambiguously to a weakness in
the test data which might sbield a potential error.

By mutating each relation or logical expression independently we
actually achteve a stronger goal than that achieved by usual branch
analysis.

Consider the compound predicate

IF (A S B AND C 5 D) THEN

The usual branch analysis method would only require two test cases to
test this predicate. If the test points were (A<BC<D) and (A<B,C>D)

this would have the effect of only testing the second clause, and not the
first. This is because branch analysis fails to take into account the
hidden paths" [4], implicit in compound predicates. (see figure 3).

FALSE FALSe

6 "ure 3

In testing all the "hidden paths" mutation analysis would require
at least three points to test this predicate. The three points
correspond to the branches (A > B,C > D), (A f- B.C > D), and (A -_5 B, C -
D).

As an example of this consider the program shown in figure 4.
adapted from [6]. The program, which was also studied in f171. is
intended to derive the number of days between two given days in a
given year. The If statement which determines whether a year is a leap
year or not is. however, incorrect in this version. Notice that if a year
is divisible by 400 (year REMt 400 = 0) it is necessarily divisible by 100
(year REM 100 = 0). Hence the logical expression formed by the
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conjunction of these two terms is equivalent to just the second term
alone. Alternatively, the expression year REM 100 = 0 can be replaced
by the logical constant TRUE and the resulting mutant will be
equivalent to the original. Since this is obviously not what the program-
mer had in mind the error is discovered.

PROCEDURE calendar (INTEGER VALUE dayl, monthl, day2, month2, year);
BEGIN

INTEGER days;
IF month2 = monthl THEN days = day2 - dayl

COMMENT if the dates are in the same month, we can compute
the number of days between them immediately;

ELSE
BEGIN

INTEGER ARRAY daysin (1 .. 12);
.aysin(1) := 31; daysin(3) 31; daysin(4) : 30;
d,,ysin(5) := 31; daysin(6) 30; daysin(7) 31;
daysin(B) 31; daysin(9) : 30; daysin(10):= 31;
daysin(1 1):= 30; daysin(12):= 31;
IF ((year REM 4) = 0) OR

((year REM 100) = 0 AND (year REM 400) = 0)
THEN daysin(2) 28
ELSE daysin(2) := 29;

COMMENT set daysin(2) according to whether or not year
is a leap year ;

days := day2 + (daysin(monthl) - dayl);
COMMENT this gives (the correct number of days - days

in complete intervening months);
FOR i:= monthl + I UNTIL month2 -I DO

days := daysin(i) + days;
COMMENT add in the days in complete intervening months:

END;
WRITE(days)

END;

figure 4

5.4. DATA FLOW ANALYSIS

During execution a program may access a variable in one of three
ways. A variable is defined if the result of a statement is to assign a
value to the variable. A variable is referenced if the statement required
the value of the variable to be accessed. Finally a variable is undefined
if the semantics of the language do not explicitly give any other value
to the variable. Examples of the latter are the values of local variables
on invocation or procedure return, or DO loop indices in FORTRAN on
normal do loop termination.

Fosdick and Osterweil [16] have defined three types of data flow
anomalies which are often indicative of program errors. These
anomalies are consecutive accesses to a variable of the forms:
1) undefined and then referenced
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2) defined and then undefined
3) defined and then defined again

The first is almost always indicative of an error, even if it occurs
only on a single path between the place where the variable becomes
undefined and the reference place. The second and third, however, may
not be indications of errors unless they occur on every path between
the two statements.

Although the first type of anomaly is not attacked by mutations
per se it is attacked by the mutation system, which is a large interpre-
tive system for automatically generating and testing mutants. When-
ever the value of a variable becomes undefined it is set. to a unique con-
stant undefined. Before every variable reference i, cheek it performed
to see if the variable has this value. If the variable does the error is
reported to the user, who can take corrective action.

The second and third types of anomalies are attacked more
direct!y. If a variable is defined and not used then usually the state-
ment can be eliminated with no obvious change (by the CONTINUE
insertion mutations described in the last section.) This may not be the
case if, for example, in the course of defining the variable a function
with side effects is invoked. In this case the definition can likely be
mutated in any number of different ways which, while preserving the
side effect, obviously result. in the variable being given different values.
An attempt to remove these mutations will almost certainly resulf in
the anomaly being discovered.

5.5. Predicate Testing
Howden [101 has defined two broad categories of program errors

under the names domain error and computation erro-rs. The notions
are not precise and it is difficult with many errors to decide which
category they belong in. Informally, howe-,er, a domain error occurs
when a specific input follows the wr-ong path due to an error in a con-
trol statement. A computation error occurs when an input follows the
correct path but because of an error in computation statements the
wrong function is computed for one or more of the output variables.

After Howden's study was published, some researchers examined
the question of whether certain testing methodologies might reliably
uncovet errors in these or other classification schemes. One method
proposed specifically directed to domain errors was the domain stra-
tegy of White, Cohen and Chandrasekaran [19].

The reader is referred to the references for a more complete
presentation of the technical restrictions and applications of their
method, but we can here give an informal description of how it works.

If a program contains N input variables (including parameters,
array elements and I/0 variables) then a predicate can be described
by a surface in the N dimensional input space. Often the predicate is
linear, in which case the surface is an N dimensional hyperplane. Let us
consider a simple two dimensional case where we have input variables I
and J and the predicate in question is

/ + 2.r_-3

The Domain strategy would tell us that in order to test his predi-
cate we need three test points, two on the line 1+2J=-3 and one a small
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distence t from the line. (see figure 5.)

Assuming a correct outcome from 'hese tests what have we
discovered? We know the line of the predicate must cut the sections of
the triangle AB and BC. Since c is quite small the chances of the predi-
cate being one of these alternatives is also small. Hence, although we
don't have complete confidence that the predicate is correct, we do
have a much larger degree of confidence then we could otherwise have
attained.

To see how mutation analysis deals with the sam problem we first
observe that it really is not necessary to have both A and C be on the
predicate line. If A is on the line and B and C are on opposite sides of
the line the same result follows. We now described how mutations
cause these three points to be generated.

As an intuitive aid one can think of mutation analysis as posing
certain alternatives to the predicate in question, and requiring the Les-
ter to supply reasons, in the form of test data, why the alternative
predicated would not be used just as well in place of the origina;.
These alternatives are constructed in various ways.

A number of the alternatives are generated by changing relational
operators. Changing an inequality operator to a strict inequality
operator, or vice versa, generates a mutant which can only be elim-
inated by a test point which exactly satisfies the predicate. For exam-
ple changing i+2J5-3 to I+2J<-3 requires the tester to exhibit a point
for which I+2J=-3, hence which satisfies the first predicate but not the
secund.

A second class of alternatives involves the introduction of the
unary operator 'twiddle" (denoted ++ or -- ). Twiddle is an example of a
non FORTRAN language construction used to facilitate the mutation
process. For an integer expression a, ++a has the meaning a+1. For
real expressions ++a means a + 1/100. -- a has a similar meaning:
involving subtractions.

Graphically, the effect of introducing twiddle is to move the pro-
posed constraint a small distance parallel to the original line (see
figure 6). In order to eliminate thse mutants a data point must be
found which satisfies one constraint but not the other, hence is very
close to the original constraint line.

Finally a third class of alternatives are constructed by changing
each data reference into all othei syntactically correct data refer-
ences, and each operator into all other syntactically correct operators.
The effects of these arc related to the phenomenon of spoilers, which
are described in section 5.3.

The total effect caused by so many alternatives is to increase thr
number of "ata points necessary for their elimination, hence by a pro-
cess similar to that of Cohen et al[19] to increase our confidence that
the predicate is indeed correct.

In order to more graphically illustrate the construction of these
alternatives and demonstrate their utility we will go through a small
example. The program in figure 7 was taken from [19]. No
specifications were given, but the program can be compared against a
presumably "correct" version. It waF chosen here because it only
involves two input variables, hence the alternatives can be easily illus-
trat ,d in a graphical marner.
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READ l,J:

IF I L J + 1
THENK= I + J - 1:
ELSE K = 21 + 1;

IF K _ I+ 1
THENL= I + 1:
ELSE L =J - 1:

IF I= 5
THEN M = 2*L + K.
ELSE M = L + 2*K -1;

WRITE M;

figure 7

1. IF (I S+ 0)
2. IF (I S J + 2)
3. IF (I S J + I)
4. IF (I S J + J)
5. IF (1 S J + 1)
6. IF (2 S J + 1)
7. IF (5 _ J + 1)
B. IF (I ; 1 + 1)
9. IF (I _ 2+ 1)
10. IF (I S 5 + 1)
11. IF(] 6 J + 5)
12. rF'(-I < J + 1)
13. IF( ++I 6 J + 1)
14. IF(--I 5 J + 1)
15. IF(I 6 -J + 1)
16. IF(I S ++j + 1)
17. IF(I 9 --J + 1)
18. IF(I S -(J + 1))
19. IF(I5 +4(J+ 1))
20. IF(I S --(J + 1))
21. IF(.NOT. IS J + 1)
22. IF(I 6 J - 1)
23. IF(I _ MOD(J. 1))
24. IF(J S J/1)
25. IF(I S J*l)

26. IF(I < J* l)
27. IF(I _ J)
28. IF(I S 1)
29. IF(I < J + 1)
30. IF( = J + 1)
31. IF(I - J 4- 1)
32. IF(] > J + 1)

33. IF (I J + 1)
figure 8

_ _ _ _ _ _ _ 1 .
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As you can see the program has three predicates: 16J+1. K!'r+1
and 1=5. We will illustrate only the effects of changing the first.

Figure 8 gives a listing of all the alternatives tried for the predi-
cate I S .1+1. Some of the choices are redundant, for example ++I S
J+1 and 1 9 --J + 1. This is because the mutations are generated in an
entirely mechanical way. It is our feeling that the processing time lost
because or redundant mutations is much less then the time which
would be required to eliminate them by preprocessing the alternatives.

The alternative predicates so introduced are illustrated in figure
9. The original predicate is the heavy line running from the lower left
to the upper right.

In the paper from which the example program was taken the

authors hypothesize that the program contains the following fourI
errors.
1) The predicate K !? 1+ 1 should be K 1+2.
2) The predicate 1=5 should be 1=5-J.

3) The statement L=J-1 should be L=1-2.

4) The statement K]I+J-1 should read

THEN IF (2*J < ..5*1 -40)
THEN X( = 3;
ELSE K=1+J-1;

We leave it as an exercise to verify that the attempt to eliminate
the alternative K t>_ 1+2 must necessarily end with the discovery of the
first error. Note that his is not trivially the case since errors 1 and 4
can interact in a subtle fashion. In later sections we will show how the
remaining three errors are dealt with.

5.6. Domain Pushing
One very important mutation which was meationed in the last sec-

tion is the introduction of unary operators into the program. These
unary operators are introduced wherever they are syntactically
correct according to the rules of FORTRAN expression construction. In
addition to the operators ++ and -- discussed in the last section, the
remaining unary operators are - (arithmetic negation) and a class of
non FORTRAN operators ! (absolute value). -! (negative absolute value)
and Z! (zero value). It is the last three which will be of most concern to
us in this section.

Consider the statement

A = B+C

in order to eliminate the mutants

A ! B + C
A B +!C
A =!(B + C)

we must generate a set of test points where B is negative (so that H4-C
will differ from !B+C), C is negative and the sum H+C is negative.

1) Notice that if it is impossible for B to be negative then this is an equivalent mutation, that
in- the altered program to equivalent to the original. In this cawe the proliferation of tbeue al-

- ternative can either be a nuisance or an important documentation aid, depending upon the
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Similarly negative absolute value insertion forces the test data to be
positive. We use the term dataz pushing for this process. meaning the
mutations push the tester into producing test cases where the domains
satisfy the given requirements.

Zero Value is an operator defined such that Z! exp IS exp if the
value is non-zero, otherwise if the expression evaluates to zero the
value is an arbitrarily chosen large positive constant. Hence the elimi-
nation of this mutant requires a test set where the expression has the
value zero.

Multiply this process by every position where an absolute value
sign can be inserted and you can see a scattering effect, where the tes-
ter is forced to include test cases acting in various conditions in
numerous problem domains. Very often in the presence of an error this
scattering effect will cause a test case to be generated which will
demonstrate the error.

Consider again the example studied above. Figure 10 gives a list of
mutants and the accompanying graph shows the domains they push
into. As you can see even this simple example generates an extremely
large number of requirements.
1. IF (!I > J + 1)
2. IF (I > !J + 1)
3. IF (I > !(J + 1))

-*4. K (1 + J) -1

5. K (I +Q) -1

6. K =!(I + J1) - 1
7. K ! ((I + J) - 1)
8. K =20* '1+ 1
9. K = !(2 0 1) + 1
10. K = !(2 *1I + 1)
11. IF (!K <1I + 1)
12. IF (K < U + 1)
13. IF (K < !(I + 1))
14.L=!I 4- 1
15. L = !(I + 1)
16. L= Q - 1
17. L = !(J - 1)
18. IF (H1 5)
19. M 2 ! L + K
20. M ! 2 L + X
21. M 2 *L + !K
22. M ! (2 * L + K)
23. M !L + 2 *K - 1
24. M L + 2 ! K - 1
25. M =L + !2 *K - 1
26. M = (L +4 2 *K) - 1
27. M =!(L + 2 0 K - 1)

figure 10

Recall again that one of the errors this program was presumed to
contain was that the statement L=J-1 should have read L=1-2. One
effect of this error is that any test point in the area bounded by I =J+ 1

testers point of view. The topic of equivalent mutants will be taken up in section 5. 10.

6L.
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and I = 1 will be computed incorrectly. But it is precisely this area that
mutants 8, 9 and 10 push us into. This means that this error could not
have gone undiscovered using mutation analysis.

This process of pushing the programmer into producing data satis-
fying some criterion is also often accomplished by other mutations.
Consider the program in figure 12. which is based on a program by
Naur[ 14], and has been previously studied in the literature [7].

alarm := FALSE
bufpos := 0;
fill := 0;
REPEAT
i character(cw);
I cw=BLorcw=NL
THEN

IF fill + bufpos 6 maxpos
THEN BEGIN

outcharacter(BL);
END

ELSE BEGIN
outcharacter(NL);
fill:= 0 end;
FOR k := 1 STEP 1 UNTIL bufpos DO

outcharacter(buffer[k]);
fill:= fill + bufpos;
bufpos 0 END

ELSE
IF bufpos = maxpos
THEN alarm:- TRUE-
ELSE BEGIN

bufpos := bufpos + 1;
buffer[bufpos] := cw END

UNTIL alarm OR cw = ET

figure 12

Consider the mutant which replaces the first statement FILL:0
with the statement FILL:=1. The effect of this mutation is to force a
test case to be defined in which the first word is less then MAXPOS
characters long. This test case then detects one of the five errors in
the program [7]. The surprising thing is that the effect of this rnuta-
tion seems to be totally unrelated to the statement in which the muta-
tion takes place.

5.7. Special Values Testing
Another form of testing which has been introduced by Howden[11],

is called special values testing. Special values testing is defined in
terms of a number of "rules", for example
1. Every subexpression should be testing on at least one test case

which forces the expression to be zero.
2. Every variable and subexpression should take on a distinct set of

values in the test cases.

That the first rule is enforced by the zero values mutations has
already been discussed in the last section on domain pushing.
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That the second rule is important is undeniable. If two variables
are always given the same value then they are not acting as "free vari-
ables" and a reference to one can be universally replaced with a refer-
ence to the second. In fact this is exactly what happens in this case,
and the existence of these mutations enforces the goals of the distinct
values rule.

A slightly more general method of enforcing this goal can be con-
structed as follows: A special array exactly as large as the number of
subexpressions computed in the program is kept, with two additional
tag bits for each entry in this array. Initially all tag bits are off. indicat-
ing the array is uninitialized. As each subexpression is encountered in
turn the value at that point is recorded in the array and the first tag
bit is set. Subsequently when the subexpression is again encountered if
the second tag bit is still off the current value of the expression is corm-
pared against the recorded value. If they differ the second tag bit is
set. Otherwise no change is made.

In this fashion by counting those expressions in which the second
tag bit is OFF and the first ON one can infer which subexpression have
not altered their value over the test case executions, and hence one
can construct mutations to reveal this. This method is similar to one
used in a compiler system by Hamlet[B].

5.8. Coincidental Correctness
We say the result of evaluating a given test point is coincidentally

correct if the result matches the intended value in spite of the fact
that the function used to compute the value is incorrect. For example
if all our test data results in the variable I having the values 2 or 9,
then the computation J = 1*2 could be coincidentally correct if what
was intended was J = I"2.

The problem of coincidental correctness is really central to oro-
gram testing. Every programmer who tests an incorrect program, and
deems it to be correct, has really encountered an incidence of coinl-
cidental correctness Yet with the exception of mutation analysiF no
testing methodology in the authors knowledge deals directly with tnis
problem. Some researches even go so far as to state that the probler-!
of coincidental correctness are intractable [19].

In mutation analysis coincidental correctness is attacked by the
use of spoilers. Spoilers implicitly remove from consideration data
points for which the results could obviously be coincidentally correct,
in a sense "spoiling" those data points. For example by explicitly mak-
ing the mutation J=]*2 => J=I**2 we spoil those test cases for which I =
0 or I = 2. and require that at Ioast one test case have an alternative
value.

Using again the example program introduced above, figures 13
and 14 show the spoilers and their effects associated with the state-
ment M=L+2*K-1. Notice a single spoiler may be associated w th up .,
four different lines depending upon the outcomes of the first two pred:-
cates in the program. Pictorially, the effects of spc,,fers are that within
each data domain for each line there must be at least one test case
which does not lie on the given line. In broad terms the effects of th's
are to require a large number of data points for which the possibilities
of coincidental correctness are very slight.
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I. M = (L + 1K) - 1
2. M = (L + W) - 1
3. M =(I + 2K) - 1
4. M =(J + 2K) - 1
5. M = (K + 2*K) - 1
6. M = (L + 2*1) - 1
7. M= (L + 2J) - I
8. M =(L + 2L) - i
9. M =(L + IK) - I
10. i = (L + JOK) - I
11. M = (L + K°K) - 1
12. M= (L+ L'K)- 1
13. M = (L + 2*K) - I
14. M = (L + 2"K) - J
15. M = (L + 20K) - K
16. M = (L + 2K) - L
17. M = (1 + 20K) - I
18. M = (2 + 2*K) - 1
19. IM = (5 + 2*K) - 1
20. M = (L + 2*1) - 1
21. M = (L + 2-2) - 1
22. M (L + 2*5) - 1
23. M =(L + 5*K) - 1
24. M = ( - L + 2,K) - 1
25. M (L + - 2*K)- 1
26. M= (L + 2- K) - 1
27. M =(L + 2* -- K) - 1
28. M= - (L + 2*K) - 1
29. M =- ((L + 2"K) - 1)
30. M= (L + 2 + K) - 1
31. M = (L + 2 - K) - 1
32. M = (L + MOD(2.K)) - 1
33. M= (L + 2/K) - 1
34. M= (L + 20K) - 1
35. M = (L + 2) - I
36. M = (L + K) - i
37. M = L - 2*K - I
38. M = (MOD(L.2*K)) - 1
39. M = L/2K - I
40. M = L*2"K - I
41. M = L*0(2*K) - 1
42. M = L - 1
43. M = (2-K) - I
44. M = L + 2*K + 1
45. M = MOD(L + 2"K.1)
46. M = (L + 2*K)/I
47. M = (L + 2'K)*l
48. M = (L + 2"K)"I
49. M = (L + 20K)
50. I = 1

figure 13

'. .- ;.
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for RI = 0 by I to N begin
RD <- a(RI)
for R2 = RI +I by 1 to N begin

if a(R2) > RO then begin
RD <- a(R2)
R3 <- R2

end
end
R2 <- a(R1)
a(RI) <- RD
a(R3) <- R2

end

figure 15

Often the fact that two expressions are coincidentally the same
over the input data is an indication of program error or poor testing.
For example the sorting program shown in figure 15. taken from a
paper by W;rth[20], will perform correctly for a large number of input
values. If, however, the statements following the IF statement are
never executed for some loop iteration it is possible for R3 to be
incorrectly set, and an incorrectly sorted array may be produced.

By constructing the mutant which replaces the statement a(R1)
RD with a(Rl) *- a(R3) we point out that there are two ways of defining
RD, only one of which is used in the test data. Therefore the error is
uncovered.

5.9. Missing Path Errors
As identified by Fowden [10], we can say a program contains a

missing path error if a predicate is required which does not appear in
the program under test, causing some data to computed by the same
function when really different functions are called for. These missing
predicates can really be the result of two different problems, however,
so we might consider the following definitions.

A program contains a specificational missing path error if two
cases which are treated differently in the specifications are incorrectly
combined into a single function in the program. On the other hand a
program contains a computational missing path error if within the
domain of a single specification a path is missing which is required only
because of the nature of the algorithm or data involved.

As example of the first type of path error is error number four
from the example in section 5.5. Although this error might result from
a specification, there is nothing in the code itself which would give any
hint that the data in the range 2 *j<-5 "i-40 is to be handled any
differently then given in the test program.

For an example of the second class of error consider the subrou-
tine shown in figure 16, adapted from [13]. The inputs are a sorted
table of numbers and an element which may or may not be in the table.
The only specification is that upon return X(LOW) $ A ; X(hIGH), and
EhIGH <= LOW + 1. The problem arizes if the program is presented with
a table of only one entry, in which case the program loops forever.

Nothing in the specifications state that a table with only one entry
is to behave any differently from a table with multiple entries, it is only
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SUBROUTINE BIN(X.N.A.LOW.HIGH)
INTEGER X(N). N.A. LOW.HIGH
INTEGER MID
LOW = 1
HIGH = N

6 IF(HIGH - LOW - 1) 7.12.7
12 STOP
7 MID = (LOW + HIGH) / 2

IF (A - X(MID)) 9,10,10
9 HIGH = MID

GOTO 6
10 LOW = MID

GOTO 6
END

figure 16

because of the algorithm used that this must be treated as a special
casile.-

Problems of the second type are usually caused by the necessity
to treat certain values, for example negative numbers, differently from
others. This being the case the process of data pushing and spoiling
described in sections 5.6 and 5.8 will often lead to the detection of
these errors. So it is in this case where an attempt to remove either of
the following mutants will cause us to generate a test case with a single
element.

IF (HIGH - LOW - 1) 12,1Z, 7
MID = (LOW + HIGH) - 2

Since mutation analysis, like most other testing methodologies,
deals only with the program under test (as opposed to dealing with the
specifications of those programs), the problems of detecting
specificational missing path errors are much more difficult. Since
mutation analysis causes the tester to generate a number of data
points which exercise the program in a multiplicity of ways our
chances of stumbling into the area where the program misbehaves are
high, but are by no means certain.

So it is with the missing path error from the example in section
5.5. It is possible to generate test data which passes our test criterion
but which fails to detect the missing path error. We view this not as a
failure of mutation analysis, however, but as a fundamental limitation
in the testing process. In the author! view the only way that these sorts
of problems have a hope of being eliminated is to start with a core of
test cases generated from the specifications, independent of the pro-
gram implementation. This core of test cases can then be augmented
to achieve goals such as those presented by mutation analysis. Some
methods of generating test data from specifications have been 0is-
cussed elsewhere [7,17].

5.10. Equivalent Mutants
As was mentioned in a footnote in section 5.8, if a variable is con-

strained to being strictly positive (which is often the case) then insert-
ing an abso'ute value sign before each reference to that variable will
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generate an alternative program which is in all respects functionally
identical to the original. A mutation which produces such an equivalent
program is called an equivalent mnutant.

Almost any of the mutation types used in the current system can,
under the right circumstances. produce an equivalent mutant. It has
been observed empirically that with the exception of those mutations
produced by inserting absolute value signs (which often vary widely)
the number of equivalent mutants produced is usually 2-5%~ of the total
number of mutants.

In the current system no attempt is made to remove equivalent
mutants algorithmi-call y, even though in a large number of cases it

.would be possible to do so. The reason for this decision is because even
though equivalent mutants serve no purpose from the point of view of
test data analysis, they serve a very important role in error detection.

No mutant is ever declared equivalent except by an explicit com-
mand from the tester. In order to determine equivalence the tester
must often spend a considerable amount of time examining the code,
and in the process obtain an intimate knowledge of the algorithm ana
how it works.

Often a number of mutants can be labeled equivalent on theI
strength of a single insight. Example are recognizing that a variable is
by necessity positive during part of the program. or recognizing that in
a binary search algorithm it doesn't matter how you choose the middle
element as long as it is between the lower and upper bounds.

The fact is, however, that in attempting to remove equivalent
mutants we are forcing the programmer into a very careful review of
the program. Haw many errors are discovered in this manner is more
of a question in psychology then in program testing. but our experi-
ence has been that often such a careful review will uncover very subtle
errors which would be difficult to discover by other means.

As an example of this process, we must admit that no mutation in
tbe current system would force the tester into discovering the second
error in the program in section 5.5. (Notice that if J had been refer-
enced in the section of code following the 1=5 predicate then the pro-
cess of data pushing would have revealed this error.) None the less the
following mutants are equivalent for the given program. An examina-
tion of these would force the tester almost directly into a review of the
area of code containing the bug. And the search would be intensified if

- the tester realized these changes would not be equivalent in the
corrected program.

1M= 2!L+ K
M = !2*L + K
M = 2'L + !X(
M = !2L+ K)

6. Discussion

After an extended exposition of the mechanics of mutation
analysis we are now in a position to take a more global took into why
this all works. It seems to us that there are two general arguments
which can be put forth, summarized as follows:
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1) With respect to error detection. it is not that the mutants them-
selves capture the errors which may be in the program, it is
rather that the mutation task forces the tester into finding data
which exercises the program in a multiplicity of ways, and thi!:
exercising is what is likely to uncover the errors.

2) The goal of mutation analysis is difficult to attain (this is
confirmed by more then two years experience with this process).
and by setting a difficult goal we force the programmer into a very
careful review of the programs. Independent of all other claims
made by this method, merely forcing the programmer to spend an
extended period of time reviewing the coded product will often
lead him into discovering errors in logic or design.

Of course we would hope that the first is the dominant reason for
discovering errors in programs, and indeed the studies we have so far
conducted indicate this. We mention the second, however, because it is
often significant in real applications, and is a fact niot usually noticed
by automated tool designers.

As we saw in section 5.10, the mutations implemented in the
current system are not sufficient to detect all programming errors.
This we view not as a weakness in the methodology but in the mutation
operators used. As we collect more and more examples of such errors
we can look for patterns in the types of errors which can go undetected
by our system. By observing these patterns we may find new mutant
operators which will detect these errors. In this manner the system
may be continually improved, and our understanding of the program--
ming process itself increased.

We have also observed that as the complexity of programs
increases, the number of "building blocks" from which mutations are
constructed grows , and the chances for errors like those jus,
described to go undetected actually diminishes. This is perhaps a
novelty- a method which works better on complex programs then or.
simple ones
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2) the number of mutants grows roughly proportional to the number of statementsa tties the
number of unique data references in the program.
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Discussion of "A Survey of Programming Testing Issues"

Timothy A. Budd . Richard A. DeMillo +
. Richard J. Lipton and

Frederick G. Sayward

In this paper Goodenough addresses a myriad of issues and goals

encountered in testing computer programs. During his discussion of using

testing to show program correctness it is explained that testing can be

used to ensure the absence of program errors providing that one has

successfully performed a test which is both .rel-iable( 1 ) and val-id.( ) . The

effectiveness of this approach lies in finding reliable and valid tests

which, as observed by Goodenough, can be extremely difficult. Our main

purpose in this note is to comment on these concepts, on their

applicability to testing computer programs, and to suggest an alternative

approach.

As in an earlier paper [5]. reliability and validity are defined in

terms of quite precise and formal properties of computer test data

selection criteria. With these definitions a so-called "fundamental

theorem" was proved in [5] which roughly states:

If a- test data selection criteria which is valid and reliable can

be used to select test data for a given program, and if the

program is correct on the selected test data, then the program is

correct on any data.

(+) School of Information and Computer Science. Georgia Institute of
Technology. Atlanta. Georgia 30332

(*) Department of Computer Science. Yale University. New Haven, Connecticut
06520

(1) See Goodenough's paper for the formal definitions of these and other
terms which we will drawn on in this discussion.

• I
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Several comments are in order on this approach. First, reliability and

validity are defined as binary attributes; that is, either a test data

- selection criteria has or doesn't have one or both of these properties.

However, intuition says we should expect that a program test Is reliable

and valid if it is useful in predicting the correctness of a program - not

necessarily ensuring absolute correctness in the formal sense, but at least

increasing our confidence that the program is indeed correct. Although

- Goodenough addresses this aspect indirectly in a footnote, where the idea

of measuring a test data selection criteria's reliability and validity is

discussed in passing, there is the danger that readers will follow him and

not focus on this issue which we consider to be the most important issue of

his approach to using program testing to ensure program correctness.

- Second. we feel that the fundamental theorem provides no useful information

or guidelines for anyone who has to test real programs since it is aimed at

showing absolute correctness. What Goodenough has done is to reiterate the

conclusion of [5] - if you prove that your testing criteria is perfect In

a fairly obvious sense, then your program is correct if it passes the test.

- Clearly. this is the expected deduction. He then says that research in

this area of program testing should be directed toward finding reliable and

valid testing methods, or at least establishing how "close" the methods are

to being reliable and valid so that we can judge how "close" to perfect are

programs which pass the test.

- As an editorial note, while the fundamental theorem of (5] shows that

validity and reliability are sufficient conditions for demonstrating

program correctness by program testing, they certainly aren't necessary

conditions. Yet Goodenough consistently says that program tests must be

valid and reliable if correctness is to be gotten from testing. Clearly,
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this is misleading and could adversly influence future program testing

research efforts.

Goodenough ends on a pesimistic note in stating that, from a

scientific point of view, testing research can hardly be said to be in its

infancy. He. as others in the software engineering community, most notably

the program verification school, continue to point out that program testing

4s insufficient to guarantee program correctness. We agree. However.

since all soft,.are being used today, since all software that has ever been

developed to solve any real problems, has been developed using testing. we

must ask the following rather obvious question:

Given that program testing, while not a perfect technique, has

proved to be a very useful technique, how can we develop testing

methodologies which have less than perfection (absolute program

correctness) as their goals yet still yield substantial gains?

It is clear to us that the future direction of software engineering must

not turn its back and risk not developing this very important research area

the way it should be. It is all too easy, and wrong, to take the popular

viewpoint that program building is a purely logical deductive activity to

which program testing is unsuitable. Our viewpoint is that program design

and development is an empirical engineering activity and when Goodenough

says that program testing is not even in its infancy, we take it to mean

that an inferential formalism for program testing has not yet been

developed. However, it seems clear that such a formalism is not entirely

necessary if one is willing to accept that programming is a human.

inductive activity which may never be subject to complete formalism.

In the remainder of this discussion we will overview an on going

res;earch effort which is aimed at achieving gains from program testing
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while not ensuring perfection: namely. progra.m mutation [4]. It has been

observed [6] that the vast majority of errors that remain in software, once

it has been tested and put into production, tend not to be rad-ical.

?-_rors ( 2 ) but rather are interacting combinations of silmple errors.

Indeed, there are many "horror" stories similar to the failure of an early

Vangard missile launch because of a missing right parenthesis in a

controlling program. So a resonable goal of program testing is to rule out

all combinations of simple errors: that is. design a program testing

method with the goal being that if a program passes the test then either

(1) the program is correct, or

(2) the program is radically incorrect.

But even this seems too ambitious if one attacks directly. First, given a

program we must be able to generate all of its simple errors. Assuming

that this can be done, we next must eliminate the simple errors and the

c.omplex errors which eminate from their combinations. Clearly the number

of complex errors will be a combinatoric explosion in the number of simple

errors. While it may be feasible to eliminate all simple errors, explicit

elimination of all complex errors appears intractable.

The goal of the program mutation testing methodology is to establis',

that a given program is either correct or radically incorrect. Let L be

the programming language under consideration. A mutant operator is a

simple program transformation, dependent on L. which produces mutant

programs of the a given program P. The mutants are also programs in L.

(2) There are no agreed on technical definitions of errors categories. We
too will be informal. By radical we mean errors due to grossly
misunderstanding the program specifications - errors which are
difficult if not impossible to capture by general algorithmic methods
but which would easily be observed by almost any test or when the
software is first put into production.
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The goal of the mutant operator is to introduce simple errors In P. thus

producing mutants of P. Alternatively, if P is incorrect due to a single

simple error, some mutant would be a correct program tor the given task.

There should be several mutant operators. each corresponding to different

classes of simple errors that may occur in L. Let M(P) denote the set of

all mutants of P. Ideally. M(P) should contain inutants corresponding to

all and only the possible simple errors. However, this Is too ambitious a

goal for general purpose program transformations and we relax the

requirement to be that M(P) covers all simple errors in the sense that M(P)

may also contain mutants which are equivalent to P. We ]et M (P) denote

all the mutants of P which come from multiple applications of mutant

operators on P. These muta~its are also programs in L.

Let D be the input domain of P. P is said to pass the mutation test

with data T if there exists T a subset of D such that

(1) P is OK(T), and

(2) for each mutant m in M(P) either

(a) m is not OK(T), or

(b) m is equivalent to P.

If P passes the mutant test then we are sure that P is free of simple

errors. But what of complex errors? To this end we have observed a

couplin effect which states:

Test data T which causes all the non-equivalent mutants of M(P)

to fail is so sensitive that all te non-equivalent mutants of

M (P) must also fail on T.

The Justification of the coupling effect parallels the probabalistic

argument for justifying the single fault methods used to test circuits;

however, we have no theory to make it a hard-fast principle. Basically. if
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several simple errors (detectable by T) combine to make a complex error

then it is extremely unlikely the simple errors will cancel to allow the

successful execution on T of the mutant containing the complex error. The

goal of program mutation theory is then to validate, depending on L either

deductively or experimentally, the coupling effect for language L by

establishing the following eaere of pr.oram mutation:

If P passes the mutation test then either

(I) P is correct, or

(2) P is radically incorrect.

In [1] the mutation metatheorem has been formally shown to hold where L is

certain classes of decision tables and the mutant operator involve the

reformulation of conditions and applied actions. Currently, programs which

manipulate data structures are under investigation.

For general purpose programming languages, such as FORTRAN, the task

is more difficult. There is a noticable lack of empirical studies on

programming errors to drawn on in formulating a complete set (3 ) of mutant

operators - a necessary requirement for program mutation to be deductive.

Hence, at at least for now, in the case of general purpose languages we can

consider program mutation as an inductive tool for gaining confidence that

the metatheorem of program mutation holds for a particular program P. A

prototype system for a subset of FORTRAN has been implemented [2] and some

initial experience with it and the effectiveness of the implemented mutant

operators and substantiations of the coupling effect can be found in [3).

A mutation system for ANSI FORTRAN is in the design stage. Several

experiments to finding "good" mutant operators and for evaluating the

(3) Here. complete means that all simple errors will be captured in M(P).

I q . .. . . . . .. . . . . . . . . . . . .. " ,, r . . ... . . . . . . . . . . . . . . . . .. . . . . . . . ' " "
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effectiveness of mutation testing are wnder -onsideration.

Some final commments on performing the mutation test are in order.

Clearly the size of M(P) and T must be small. Our view is that the

mutation system should be interactive. The user specifies the program P

and initial test data T i to the system whence the mutants are generated and

executed on T1 . A list of mutants which fail and which succeed on T, is

produced. The user must then examine his results to decide

(1) P contains a non-radical error.

(2) Because mutants which should have failed didn't. T1 must be

augmented to T2 and the system re-run.

(3) Some mutants are equivalent to P. There is hope here that

symbolic execution techniques can partially automate this task.

This cycle can be viewed as a session in which the user defends P and the

current test data against a system adversary which asks questions of the

form, "Why doesn't your test data distinguish this simple error?" Such an

adversary forces the user of program mutation into a careful and detailed

review of his program and the design decisions made in constructing it. In

this view we hold hope that even radical errors can be uncovered by users

of program mutation.
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:HE STA 'S OF RESE.ARCH 'ON PROGRAM MUT.\'ON

:n(*) -
Richard J. -. con and ?deder..ck S. Sa:ward

December 1978

.BSIRACT

k status report on two new program mutation systems is 3iven. -he first :
the EXPER system for testing programs written In ANS- FORTRAN and for
experimenting on the concepts of program mutation. :t has been desgne ,
i eplemented, and is in its final debugging stages. The second is the _7M.S
systems for testing programs written in a COBOL subset. This system is in
its final design stage.

.iso, the results of a new experiment on substanta3t_.-g the "couDiing
efect" of our FCR-.TAANi systems are presented.

N.. ODUC,.ON

Program mutation is a relatively new approach to program testing

whizh, unlike traditional methods, attempts to exploit :he fact that good

programmers write code which is "close" to being cor-rec:. Tradi:iona.y,

the fundamental question addressed in program testing has been:

GIven that a program P is ',own to work on test data T, can
we conclude that P works in general?

As expected, the traditional question is theoretical/ unanswerable ;S .

"c,;ever, program testing researchers have made ad'7ances in provc:ng

definie answers for special cases (6,101 and, for the general case, have

provided methods [3,9,11,12: for gaining conzidence in a osirlve answer.

Program ,mutation, on the other hand, has striven to answer a weaKer

yet 4uie realistic question. The formulation of this weaker question ;s

C*) Department of Electrical Engineering, :yiversiy of Zal forta a:
Berkeley, Berkeley, California 9472_0

- Deoar-ment of Computer Science, Yale e7niversi7, 'ew Faven, Cornec:-:ur

This research was supoor-ed 'n :ar by Ceor::a bsy" rute of -echnos:og"
-Dcontracts under the stonsors._I :f ARM:CS -ese3rZh Zant >G

_ __-"_-_- ! 'I
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based o, wi-,at we ca :ne cornoeten- DroLrammer as.I=Dtior.:

M competent prorammer, after severa- iterations and on

6eezing tnat h.s job of 6esigning, cocing, and tes::ng ";s
comrace:e, has written a program that is either correc: or
"almost" correct ir the sense that i: differs from a correc:

program in on!y simple ways.

As a sizple example, suppose we want a FORTRN program that computes tne

distance from the origin to an N-dimensional vector Y where the distance is

defined to be the square root of the sum of the soupres of the elements of

X. We would accept the following incorrect prograz as being written by a

competent programmer:

PR OGRAN P I
SU U-1
DO 1 I-1,N
SUM-SLN+X(I )**2

I DIST-SQRT(SIM)

3ut we would question the competence of a programmer who produced

PROGRAM P2
DIST-X(I)
DO 1 I=1,N

I DiST 1AX(X( ),D:ST)

With the competent programmer assumption, the cuestion adoressez ir. Drcgram

mutation becomes:

Given that P is written by a competent programmer and that P

is kunown to work on rest data ", can wE conclude that P
works in general?

Note that the mutation question differs philosophically from the

traditional testing questing in a very important way: traditionally, a

program is treated as a random object, whereas in program mutation a

program is assumed to be either correct or almost correct, a mutant o: a

correct program. Thus program P above is a mutant of the correct program

P for the distance problem:
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PROGRA P

SLN-O. 0
DO I t-I,N

I SUb' S M 'X( I)**'2

DiST-SORT(StX)

P, on the other hand, is not a mutant of P.

To apply program mutation, we choose the method of eiilinaring :he

alternatives -- developing a test set T on which :he program P is :orrec:

but on which all mutants of P fail. In practice there are far coo many

mutants of P to consider. But by concentrating on the "first order'"

mutants of P the methodology becomes tractable. Firs: order mutants of ?

come from a single application of a mutant operator, a siple svnrtact_ or

semantic program transformation such as (1) changing a particular ibnscance

or a relational operator to one of the five other rplational operators, or

( - hanging the label par- of a particular GOTC sca:amen: to one of the

other labels appearing in the program. 'e then rely on the coupling

effect:

Test data that causes all first-order mutants of a program
to fail is so sensitive that all higher-order mutants of the
program will also fail.

To illustrate, the following two programs are first-crder mutants of

program ? above:

PROGRAM Ill ?ROGRAM '12
SUM-I SM-0.0
DO I 1-1,N CO I 1-1,N

1 STJM-SM X(t)**2
DIST-SQRT(SM) I DIST-SQRT(SL)

Program P is a mutant but not a first-order mutant of P. 3y the :ouii:..

effect, if P is correct on test data 7 while Ml and M_ fail, then ?I =ust

also fail on T.

';ith this formulation, the effecz:iveness of nrzg.a_ ucat.on now

d eends on :he 'ai-: of :-;o issi=ot-ons: - - e:..t pr-r3m:. er

_ ¢



69

assumption and the coupling effect. i. practice, -heoretical studies

no:w.:Instanding ,, i: is not necessary to show formallv that these

ass=p:ions hold in order for program mutation to be a userul too' for

testing real programs writter, in rea. programming languages. we nave :ound

that in performing mutant tests on an incorrect prog-am :he user is forced

into developing test data on which the program fails []. So we are

interested in building interactive systems to aid programmers in performing

mutant tests and in evaluating the effectiveness of the approach. We pick

a real programming language L and, based on the literature and our personal

experience, define an appropriate set of mutant operators for L. Then we

build a man-machine mutation system that aids in performing mutant tests

for I and the chosen mutant operators. Using the system and other aids, we

:hen perform experiments to substantiate the competent programmer

assumtnion and the coupling effect for L and the given mutant operators;

we also check to see how effective the system is as a testing tool.

So far we have introduced program mutation [4] and built a Dilot

mutation system, called PDOIS, for a subset of FORTRAN [I . With PD'.S we

wanted to gain some initial experience with mutations ane building mutation

syste=s. The subset consisted of a single FOP."AN subroutine -th DO, 17,

G070, and assignment statements as the control structures. The data

structures were integers with arrays of up to two dimensions. The mutant

operators were four classes: declaration, data reference, operator

evaluation, and control flov- We discussed user methods of determining the

correctness of a program on test data, automatic detection of mutant

failure, mutants ecuivalent to a given program, nor-terminating mutants,

and managing the n mutants generated by appli-ng the mutant operators, n

tne number of executable statement in the program. We have also done
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exper--ments on the coMpetent programmer assumt:on and :he coupiing

effect [5].

Now we would like to report on two new ?rgram -utati n svstems, one

for nearly full ANSI FORRAN, the other for a CCBOL subset, and on a new,

stronger experiment for substantiating the coupli-ng e:fec: for our .R..- -

systems.

-I UPER SYSMTN

in wor _ng with PL'S, we observed that the test data most programmers

in:,itively feel is good as well as test data zenerated by aucrmatiz Means,

either randoml 7 or by symbolic execution, do poorly -ith respect to the

mutant test. Perhaps this 3ives evidence as to why program testing has

traditionally been held in such low esteem. We admit that .l.S w'asn't ver"

flexible in its design and consequently we ;ere able to perform only

im~ited experiments with this system.

The 7_XER system has as i's language ANSI FOR.-AN minus 1,O and

complex arith1metic. :ts mutant operators are basically the same as .n

?L1.S. The system was built at Yfale on the DEC-2. and is nearly de'ugged.

Recently, it has begun to be transported to the VA ccmpucer at C

3erkeley. Among the goals of this system are (1) determining how orcgr-'

mutation can be integrated with the design, coding, and testing of

muiti-module programs, (2) determining whether the mutant operators of ?--IS

are suff-icient for the additional data and control structures allowea

ER, (3) further experiments on the coupling effect, ano (-) ex:er:mein:s

on the effectiveness of the method.

3esides extending the language, there is another ma'or zifference

,e:-.;een ?'MS and EXPER. ?!S was designed a0_> as a ise:--e-:2c
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s vster.; the user suDmcs a program and a se-- of test data and selects

.'ht-. syste=-cefined mutant operators are to be applied to the program.

-, on :ne otner hand, is organized around :he concept of an exDerimen:

which consists of a program, a set of test data, a subset of the system's

mutant operators which ma be applied to the program, and a further subset

of this subset which will be applieu to the program. The experimenter is

easily able to generate slight differences in each of these elements and

then monitor the progress of subjects using EXPER to perform the mutant

test.

One curent experiment involves the redundancy of mutant operators.

Such redundancy could be counter-productive if time is spent constructing

test data that don't significantly increase one's confidence in the

correctness of a program. The aim of this experiment is to detect

redundant mutant operators by statistical methods. The subjects are

divided into two groups. Each group is given several programs and asked to

develop test data bv doing mutation analysis. Some of the prorams contain

bues whic., the subjects are to try to find. The difference between groups

4s :n what mutant operators thev may apply to the programs. Group 1 ts

allowed to use all implemented operators while group 2 may use all but :he

oDerator(s' in cuestion. The variables to be compared are the n=ber of

bugs located and the time used in locating them.

Several other experiments are currently being formulated, such as

experiments to evaluate executing only some mutants versus executing all

mutants or. given rest data. We plan to report on these experiments in a

:uture paper.

TE C..S SYSTD':
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'he design of a COBOL pilot mutation system, called CPMS, is i ::s.:s

ina.. stages a: Georgia Tech. The COBOL subset for this oro-ect :3ns-sts

of a single COBOL procedure with sentences of the >,OVE, CCMPT Y7, -,

?ERFOR.M, READ, W;RITE type as its control structures, character and decimal,

scalar vart-ables with the record feature as its data structures, and uD :

two secuenr:ai input and two sequential output files as its :/0 structures.

The mutant operators of CPMS will be similar to those of PLIS with major

additions for data structures and 1/0.

The CP.S design is based on ?L4S: an interactive man-machine system -_

per:frm the mutant test for programs written in the COBOL subset. C...S,

iowever, will -be more flexible than PMS in its experimental capabil-ties.

.Aside from applying program mutation to a new lang'age, the major

issue addressed in C?4S is the I/0 problem, which was avoided in ?n!S and

o9

£E"TER. As in FORTRAN, a COBOL mutant may fail in one of three ways: i: may

have an execution rault, it may time out, or it may produce incorrect

answers. 3ecause the output of an average COBOL program -ends to be much

lar3er than that of an average FORTAN program, it is not clear whether

there is an efficient way to check for t~his third kind of failure. ;e

intend to try the following scheme:

(I) A mutant fails if it tries to - a a coaer recor -han tCe

program read.

(2) A mutant fails if it reads fewer (more) records than the

program read. -9

(3) A mutant fails if i- rites fewer (more) records t.han the

program wrote.

(4) A mutant fails if it produces files that are mnequal :o the

:iles that the program produced. ere :he ,ser 5-ec:fies
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wnether a strong o a weak ecq'altvy cneck is to be use:. -c

flies are strongly eoual if their records match character '07

character; they are weakly equal if the non-blank characters

of their records mat._ch.

We hope that the vast majority of the COBOL mutants wil: fai: before ste. 4

is involved. Of course, we are not cerzaln whether a mutant that fa'is on

some steps of the scheme should not be allowed to continue anyway. Part of

the COBOL mutation project will be experimenting to find a realistic

definition of mutant failure on I/O.

STRONGER SUBSTArNILkTION OF THE COUFLING EFFECT

We have already reported on an experiment [5] involving Hoare's FIN:

program [71 that supplied empirical evidence for the roupling effect. The

experiment went as follows:

(1) We derived a test data set T of 49 cases to pass the mutant

test. (The large size of T was due to our inexperience.)

(2) For efficiency reasons, we reduced T heuristically to a test

datea set 7' consisting of seven cases on which FIND alsc

passed the mutant test.

(3) Random k-order mutants of FIND, k>!, were genera:et. ,.

k-order mutant comes from k applications of mutant operators

on the program P.)

(4) The k-order mutants of FIND were then executed on 7'.

The coupling effect says that the non-equivalent k-order mutants of Fh'7

will fail on T'. Note that step 2 biases the experiment against the

coupling effect since it removes the man-machine orientation of our

approach to testing. We would have been quite happy to find a
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counterexample to the coupling effect for PEMS, s:.nce i: would have 3L 1wea

us -o improve the set of mutant operators. The results of the em:)er-_en: .,

ho,gh, gave .vidence that we had chosen a well couvled set )f mutan!t

operators for PZIS:

k Number of k-order mutants Number successful on on

21100 19
>2 1500 0

The 19 successful mutants were shown to be equivalent to FIND. 'e

zoncentrated on the k-2 case since, intuitively, :he more one mutates

the more likely one is to get a program that violates :he competent

programmer assumption.

The major criticism of the experiment concerns step 3. Since the

rst-order mutants that compose the k-order mutants are incepentently

drawn, the resulting k-order mutant is likely to be very unstable and

subject to quick failure, in contrast to the more desirable case wnere the

k-order mutant contains subtly related changes that correspond to the

subtle errors programmers find so hard to detect.

The current experiment on the coupling effect, wn zh uses -=ER rather

than ?--MS, omits step 2 above and makes the following important zhanze .o

step 3:

(3) Randomly generate correlated k-order mutants of t.e :rtegre.

By correlated -we mean that each of the k applications of mutant o Derators

will in some way be related to all of the others -- thev zoul. for i.stzac-

effect t:he same statement of ?, or .he same vart-able name, or the same

statement label, or the same zonstant. Once agaln, if ? iasses the nutant

:est 4:h test data T, the coupling effect says "hat the -orreated -:-c-:er

mutants of P -ill fail on -

7or this ex-eriment -hree orograms are ._rz"- -isec: i:nD --. 3!, .:
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7R LAN,. S71'SL. :s a program that main:ains a szaci and allows :-e standarcc

operations of clear, push, pop, and top. rLANC; .s a prograz :ha:, g:ver.

:ne :eng:hs of the three legs of a triangle, categorizes the inpu: as no:

represen:ing a triangle or as representing a scalene, isosoleses or

ecu.:azera. tri.angle 131. The follow-ing is a summary of the resuzts of the

experiment so far:

PROGRAM k-0 k-3 k-4

number successes number successes number successes

- 3000 2 3000 0 3000 C
S Ths. 3000 3 3000 C 300C C
7RLkNc 3000 1 3000 1 3000 0

I al7 cases, the successful correlated k-order mutants have beer, shown :o

be eqtzvaler: tc the original program. T'he detailed results of the

experiment on TRFIANG are listed in the appendix.

-e have vet to find a non-trivial counterexample to the coupling

effec: for our FOFTFAN systems. The one successful 3-order mutant of

7-LANG deserves closer examination; indeed, we initially felt that i: was a

non-eauivalen: mutant. The mutant is

bUBROLINE TPIANG(!, J, K,MATCH)
C

NMECr I ,JKAC.

C5 -SoPU, FRO, THE ROt'1.NE':
C Y'A0- 1 i TRLkNGC2 IS SCA-N-

C A7TE - 2 IF TRLANGLE IS ISOSCELES
C MATCH - 3 IF TRIANGLE IS EQUIIATERAL
C MATCH - 4 IF NOT TRIANGLE
C

2 (I.LE.0.OR.J.LE.0.OR.K.L.0) GOTO 500
3 MATCH-0

-5 IF (I.NE.J) GOTO 10
MATCH-MATC.I-}I

7 8 10 IF(I.NE.K) GOTO 20
9 tATCH-MATCP.Z

%,: change statement 9 to MATCH-MATCHZ k

2 : iF( 1.) GCTO 3C
-:2 MATCF-MATCF-.3
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30 KF(A:CMH.NE.J) GO-'0 10-0
.2 ~ (J.L~.)G007 500
* -~ (-~(.L~:~G007 500-

IF(:+K.LE.J) G070 300

- RETURN

2 > 100 rFMTNN.)GOTO 200
'-F(I-J.Z-E.K) G070 500

RE JR N
200TF :YAT C H. NE . Z) G 070 30 0

MC,: ci-arige statement 29 to IF(,U-TCwJ.NrE.K)

:2F 7(-K.L. E.J) 0070 30C

NO 300 (ATCH.\N!.3, 0070 400
~(-K.~I) 007 500

M: :-ange stazement 36 tz (

3 C0T0 i 13

500 MA:CH-4

%ote :hat the correlation i th resoect to var -able K. Thie mutant:-

o:era-ors \10, and \MO2 produce incorrect mucants wtl \10, produces ai tra'.:

equii alernt to TRITANG. Yet the 3-order correlated mutan: is ecutIi:a'en: --0

7R :AN G.

mhs akes a beautiftI. illustration oai the :)a-,: of the 7 -=n

process that program mutation is trying to exploit:. Us ng the zons-zant :

in stazaments 9 and 29 is an arbi:rar7 but zolamied dec sion. z-ceec, '.10i

-arn replace both iistances of 2' by any positive zonstant (or iflv -7-rabe

.ose ia'-,e Thesn' cnange bet-ween -,he execut--on of stazements ? ir1t -

ana 7 -r zti qvaent progrim -- repl.ace on.:one '..r)StanCe 3.C "-': Ze

i7 rogr=m. .-n a 3ernse, !t.e :cnstant: I szatemenzs 3 .na

-a.!..a Ine ::hl e --m:ncI2zv of *:Dqa. a -2CIIfc 7
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k PPE NDIX

This appendix lists the output generated by EXPER and an associated

experimental subsystem for performing the correlated K-order mutation

ex-' riment on program TRIANG.

LISTLNG OF THE PROGRAM BEING MUTATED

SUBROUTLLE TRIANG(1, J, K,MATCH)
i.(. .LE. 0 .OR. J .L. 0 .OR. K .LE. 0) GOTO 500 2
MATCH a 0 3
F(: .NE. J) GOTO 10 1

MATCH - .MATCH + I
U 12(I ..WE. K) GOTO 20 8

MATCH - MATCH + 2 9
S (J .SE. K) GOTO 30 .1 iV

MATCH - MATCH + 3 12
30 2F(MATCH .NE. 0) GOTO 100 13 "-

1(I * J .LE. K) GOTO 500 ,5 1.6
2F(J + K .LE. I) GOTO 500 17 i1
2F(I + K .E. J) GOTO 500 19 20
!.ATCH - 1

:CC :Y(M.ATCH .NE. 1) GOTO 200 -3 Z-
II(I - J .LE. K) GOTO 500 '3 -5

- IO MA7CH - 2 7

,0 U:(MATCH .ME. 2) GOTO 300 29 30
-F(: - K .LEE. J) GOTO 500 31 -ZGOT0 110 :

300 '(MATCH .NE. 3) GOTO 400 1 -
U(J -K .LE. I) GOTO 500 36 37
GOT0 110 38

400 MATCH - 3 39

500 MAICH4 -

RE7,MN
-ND
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..s--N" OF 79E TEST CASES ON WHICH 'RIANG ?ASSES 7:I E.TAYT . -

-s7 :AS- \x.MBER LEG LENGTHS -RL.NGLE TYPE (N-NCT A
S " K ?R ANGLE, S=' CAL.NE, Z-

'SOS0!.ZSZE, -=_? A.R

*0 0 0 N
3 3 8 -

5 3 4 6 s
6 8 4 3 N
7 3 8 4 N
8 2 2 5 N
9 2 5 2 N

Io 2 32
11 5 2 2 N
12 0 1 1 N
.3 1 0 1 N
14 1 1 0 N
'5 5 9 9
16 9 5 9 -

17 9 9 5
18 -1 1 1 N
'9 1 -1 i N
20 1 1 -1 N
21 4 5 9 N
22 9 4 5 N
22 4 9 5 N
24 4 8 N

5 4 84,,
26 8 :4'
27 9 5 5 S
Z8 5 9 6 s
29 5.2 6 S
20 3 9 5 N

3 9 7
22 10 10 13 T

33 l0 13 10
'34 13 10 10
35 6 7 2 S
36 7 2 6 s

--37 10 5 6 5

- .1N
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.,NAL SAT:STICS FOR PASSING THE MUTNT EST ON NG

MUTANrT STATE FOR ALL PROGRAM UNITS

TOR -.XPERLiENT "EIG7HT.EXP " -HIS :S RUN 3

N iBER OF TEST CASES - 37

NUBER OF MUT.kNTS 1026
,NM BER OF DEAD MUTANTS - 955 (93.1%)
NIU.MBER OF LIVE MUTANTS - 0 ( 0.0%)
NTUI BER OF EQUIV MUTANTS 71 ( 6.9%)

NUM3ER OF MLTATABLE STA1MENTS - 42
GIVING A MUTANTS/STATLtENT RATIO OF 2!. 43

MUTANT ELLMINATION PROFILE FOR ALL PROGRAMS

KUTANT TYPE TOTAL DEAD LIVE ECUIV

CONSTANT. REPLACEMENT 30 30 100.0% 0 0.0% 0 0.0;.
SCALAR VARIABLZ REPUCM4E 126 120 95.2% 0 0.0% 6 4.8%
SCALAR FOR CONSTANT REP. 60 60 100.0% 0 0.0% 0 0.0%
CONSTANT FOR SCALAR REP. 170 168 98.8% 0 0 .0 2 '
SOURCE CONSTANT REPLACMIE 36 36 100.0% C 0.0,% 0 .
UNLkRY OPERATOR rNSERION 205 149 72.7% 0 0.0: 36 27.2

.AR"IVETIC OPERATOR REPLA 63 61 96.8% 0 0.0% 2 3.2%
RELATIONAL OPERATOR REPLA 80 76 95.0% 0 0.0%.
LOGICAL CONNECTOR REPLACE 6 6 100.C% 0 C. C% 0

- -S% !ENT ANALYSIS 42 4z 100.0% 0 0. C
5Ak7ENT DELET:ON "2 2 100.0% .% 7 D.
RE--7RN STMNAENT RELkC- 38 37 97.4% 0 0.0% i .

GOTO STAMENT REPLACM.EN 128 125 100.0: 0 0.0% 0 0. :.
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RESIULTS FOR 7Fv 0ZNERA710N, OF 2-ORDER MTAX:S Or TRIAN3

7H -FcLL-O;:NG 2-ORDER MUTANT OF 7RIANG SUCCEEDED

!UATPHYSICAL RECORD IS 428
S 7A El,\7 1CiANGED FR0.1

'- .E. 0 . OR. J . LZ. 0 .OR. K .L.0) GOTO 500

Lz:.~ -0 OR. J LE.. 0 .OR. K .1Z. 0) GOTO 500

MUTAN7 PHYSICAL. RECORD IS 726
7a 'N --1. 13 CHANGED FROM

3-- :7(MATCH .NE. C') COTO 100

3C IF(M-ATCH .=- C) GOTO 100

TIE ORDER A7
TlaE V,7-BER OF CORRLELATED MUTANTS OF TRIANG DR.AWN WAS 3000-
OF T-HOFE TI 7E NUMBER OF LIVE DRAWS WER 1

R:12 F EQUIVALENT COMPONENTS
NO. rQL' M-S N71MBER DRAWN NO. SUCCESSFUL

0 2'8190
1180 0

1 1

,vrOr:7- ON METHOD OF 2RDER MUTANT FAILURE

Z5 8 7ERMINAED B7, PRODUCED WRONG ANSWERS
CHAD AN ARIT1H1ETIC FAULT
CHAD AN ARRAY INDEXING ERROR-

Z ECL7ED A TR.AP STAT11-EN7
3: 7RZFERENCE: AN UNDEFIN!-D VARIABLE

C A -MPT.ED TO DIVIDE BY ZERO-
- ECEEEDTHE T~ILE LIfl,1T
CA7EMPTED ILLErGAL DATA- COERSION

A=- ?:*MPED 7O ALT-ER A RE-Ar ONLY VARIABLE -
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RESULTS FOR ","H GENERA7ION OF 3-ORDER M LrA.NTS OF T.N

THE FOLLOWIN4G 3-4ORDER MUTANT OF 7RIANG SU;CCEEDED

.'xUTAT PHYSICAL RECORD IS 204
S TAT EENT 29 CHANGED FRC4

200 IF(MATCH .NE. 2) GOTO 300
TO

200 IF(M.ATCH .NE. K) GOTO 300

MUTANT PHYSICAL RECORD IS 147
-STAIThENT 36 CHANGED FROM

IFJ+K .LE. I) GOTO 500
TO

- Th(J + 1 .LE. I) GOTO 500

XUTLNT PHYSICAL RECORD IS 180
-SzTTMENT 9 CHANGED FROM

MATCH - MATCH 42

TO
MATCH - MtATCH K

-IT Tul ORDER k~T 3
TE NUMBER OF CORIRELATED MUTANTS OF TRIANG DRAWN WAS 3000

OF THOSE THE NUMBER OF LIVE DRAWS WERE I

PROFILEZ OF FQUIVALZNT COMPONENTS
.4O. EQU %i{Ts NUBER DRAWN NO. SUCCESSFL

0 27 13D

8 0
3 0 0

FROF:LE ON M'ETHPOD OF 3-ORDER MTN ALR

>19 :ERM:-NAMTED BUT PRODUCED W-RONG ANSWERS
O HAD AN ARIUME71C FALULT
O HAD AN ARRAY IYDE"CNG ERROR
0 EXECwUTD A TRlAP STATMEhENT

2C2 REFERENCED AN UNDEF:NED VARIABLZ
') A--"7-4PvTED 7O DIVIDE BY ZERO

573 EXCEEDED 7HE -T*r!E L--T-
0 A7.7-EPT!D1 ILLZ-QL DAAk COERS:ON

322 AT-7--P7ED TO AL-7-1 A MEAD ONLY ',AR::43BLZ
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RPESULTS FOR T GENERAT1O!- OF 4'-ORDER ML7ANT OF TRIANG

-,- ORDER AT

: .:5ER OF CORRELATED MUTANTS OF ITLNG DPRA,'N WAS 30C
C: HO- THE N1.tER OF LIVE DRAWS WERE Q

PROFILE OF EOU:VALEN'T COMPONENTS
NC. EOU MTS NUMBER DRAWN NO. SUCCESSFLL

C. 2644- 0
1 338 0
2 18 0
3 C 0

0 0

PROFILE ON METHOD OF 4'-ORDER MLTANT FAILURE

:30S TERMINATED BUT PRODUCED WRONG ANSWERS
1. HAD AN ARITIM4ETIC FAULT
C HAD AN ARRAY INDEXING ERROR
0 EXECLTED A TRAP STATMENT

.7i REFERENCED AN UNDEFINED VARIABLE
ATTEXPTED TO DIVIDE BY ZERO

3 EXCEEDED.THE T1ME LIMIT
C ATT2PTED LLEGAL DATA COERSION

405 ATTEMPTED TO ALTER A READ ONLY VARIABLE

r
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PRGRAM MTrATION4 AS A TOOL FOR MANAGING

LARGE-SCALE SOFTWARE DEVELOPMENT

Richard DeMillo
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

Richard Lipton and Frederick Sayward
Department of Computer Science
Yale University
Now Haven, Connecticut 06520

- INTRDUCT10N
Several approaches to aid in the design, imsplementation and debugging of large-

scale software have recently emerged. Examples are restricted modularization (14),
structured prograsming (14). and program verification (9,10). However helpful they
may be to programers and low-level managers, the effects of these techniques cannot be
utilized throughout a software project management hierarchy since they are qualitative
rather than quantitative: managers should not be expected to understand code and/or
sophisticated mathematics.

In this paper we explain how an important phase of software development, testing,
can be managed effectively by use of the new program testing approach known as prograr
mu4tation (15) . Program mutation provides as a side effect the qualitative type of ir.-
formation that managers need to monitor software development and personnel performance.
The basic idea is: given a program module and its test data, program mutation provides
a measure, in terms of a percentage, of how "well" the data actually tests the module.
The higher the percentage, the more adequately the program has been tested. A program
mutation system produces the percentage and users increase the measure by either aug-
menting the data in a controlled fashion or by answering "hard" questions about the
module which are posed by the system. This process iterates until a satisfactory
testing percentage is obtained. Meanwhile, the program mutation system records all
the involved information in a data bae which can be querried at any time by members
at all levels of the project hierarchy to obtain reports containing relevant informa-
tion on the project's testing status. For example, the project manager may wish to
know only the testing percentages of all program modules while a programser may wish
to review in detail some or all of the questions and answers previously recorded for a
given module.

In section 2 we detail the theory of program mutation as a program testing tool.
Section 3 explains what types of information various members of the project hierarchy
would draw from the mutation system and how that information would be used as a manage-
ment tool. These concepts are illustrated in terms of a hypothetical compiler con-
struction project. Finally, in section 4 we present another application of program
mutation: monitoring software procurment.

- THE PROGRAM MUTATION METHODOLOGY
Program testing is an inductive science which addresses the following fundamentai

question:

."If a program is correct on a finite number of test cases,
-~is it correct in general?"

Finite test data which implies general correctness is called adequate test datai and
since adequate test data cannot in general be derived algorithmically (4) program
testing cannot be deductive. Recently, path analysnis (1.2.5,6) and symbolic execution
(7,S) have emerged as methods which allow one to gain confidence in one's test data's

adequacy. Although as with any inductive science, it is possible to make false infer-
ences with path analysis (3), the basic idea is undeniable: test data which exercises
all flowchart control paths of a program at least once must be better than test data
which doesn't. Symbolic execution is associated to path analysis since, among other
things, it attempts to derive test data which exercises all paths of a program.

Unlike previous software reliability methods, in program mutation we make the
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following assumptions

Experienced programmers write programs which are either correct
or are "almost" correct.-

That is, in the mutation terminology,

If a program is not correct, then it is a "mutant' - it differs
from a correct program by simple well-understood errors.

There is empirical evidence which supports this natural premise (11).

Boehm has found (12) that errors fall into three categories: clerical, logical,-
and misunderstanding of specifications. In the above assumption we do not explicitly
mention errors due to programmeers misunderstanding specifications; rather, it appears
we are dealing exclusively with clerical errors. While a system which would solve the
clerical error problem would be quite useful, program mutation does even more: indeed,
below we explain how the use of the program mutation methodology can lead to the detec-
tion of all three error types.

With the "experienced programmer assumption", the mutation method is. take a pro-
gram P which is correct on some test data T and subject it to a series of mutant opera-
tore, thereby producing mutant programs which differ from P in very simple ways. For
example, if

I - 1+1

is a statement in P, then

I -

I - 1+2
1 - X+0 (i.e., a no-op)

are all simple changes which lead to three mutants of P. The mutant programs are then
executed on T. If all mutants give incorrect results then it is very likely that P is-
correct (i.e.. we can infer with high confidence that T is adequate). On the other
hand, if some mutants are correct on T then we can infer that either:

(1) The mutants are equivalent to P,
(2) The test data TP is inadequate, or
(3) The program P in incorrect.

If it cannot be determined that P is incorrect from this information, then T must be-
augmented and the mutation method re-applied in an attempt to make the non-equivalent
mutants which are correct on T subsequently fail. This augmentation process forces

the programmer to examine P in detail with respect to the mutants.

At first glance it would appear that if T is determined adequate by mutation anal-
ysis, then P might still contain some complex errors which are not explicitly mutants
of P. To this end there is a coupling effect which states;

Test data on which all simple mutants fail is so sensitive that it is
highly likely that all complex mutants must also fail.

That is, if a program passes tests for all possible simnple errors then it has been
implicitly tested for all possible complex errors. It is in this effect that the

power of program mutation to detect the so-called logical errors of Boehm (12) is
revealed. Experiments which substantiate the coupling effect are reported in (13).

Using program mutation as a tool for obtaining reliable software is a highly
interactive process whose success depends in part on human judgement. Due to the-
following issues, the prograsmmer must re-examine in critical detail both his prograr-
and its specif ' "a..ions and why he made the decisions that led to the construction of
his program. The crucial issues which must be addressed by the users include:

(1) Which mutant operators should be applied to the program?
(2) Axe the program and its mutants correct on the given test data?
(3) Is a given mutant equivalent to the program?

It in here that specifications errors are discovered. Note that it is possible for a



87

1976 ASOC TECHNICAL CONFERENCE TRANSACTIONS-CHICAGO

I utation system to provide the users with information which greatly facilitates :escl-
ving these issuest indeed, a motation system can n-vn resolve them automatically In
some cases.

In using a program mutation system, a prograrmmer specifies to the system hii pro-
gram, test data, and the mutant operators he wishes to be applied. The system then
generates and executes the mutants on the test dati and produces a report indicating
which mutants are correct on the given test data. The determination of mutant correct-
ness is done in one of two ways: (1) by direct comparison of the mutant output with
the program's output, or (2) by a user-supplied algorithm which examines the output of
the mutant. In both cases the system asks the user whether or not the program is
acceptable on the test data. However, determination of mutant failure is done by the
system.

Upon examining the report, the user may re-run the system and augment his test
data in an attempt to make the remaining mutants fail. He may also specify that addi-
tional mutant operators be applied to the program. The system produces another report
of the same nature as the first for the user to examine. This cycle continues until
the user is satisfied that his current test data adequately tests his program.

MANAGEMENT ASPECTS OF PRCGRAM MUTATION
Successful large-scale programming projects rely on a hierarchical flow of infor-

mation and decisions. A fragment of such a project structuring is represented in
figure 1. In addition, there is a recognizable time-ordering of events for gathering

PROJECT MANAGER

CHIEF PROGRAMMER 1 CiIF PROGRAMMER 2 , CHIEF PROGRAMMER m

PROGRAMMERS PROGRAM4ERz PROGRAMMERS
TESTERS TESTERS TESTERS

Figure 1. Hierarchical Management Organization

information and making decisions which correlates with the hierarchical Management
structure. Events such as "decide input file structure", "gather documentation fronm
the submodules of module 141", "begin testing module M45" provide transformations of the
programming task, replacing the as yet incomplete project with the next stage as deter-
mined by the most currant information. The management hierarchy generally parallels
the modular decomposition of the programming task. This can be seen directly in
figure 2 where we illustrate a decomposition of a m'ltiple pass compiler.

During the test phase of the project the mutation system records a wealth of
information in its data base and this data is used to produce reports which directl~y
influence decision-making throughout the project hierarchy. The type of information
drawn from the mutation system and its uses vary depending on the project hierarchy
level of the querrier. In this section we sketch some possibilities for the three
levels illustrated in figures I and 2. Additional possibilities can readily be imag-
ined. The general idea is: the higher the querrier is in the project structure, the

- " ~' less programming oriented is the gathered information.

Project Manager's Report
The project manager periodically meets with the chief progranmmers to evaluate the

project's testing status. Also, the assignment of personnel and the evaluation of
personnel performance are done at this level. The project manager's report would con-
tain information such as:

(1) The name of each module.
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COMPILEI1 PROJECT

II MACHINE
SCANNER PARSER CODE DEPENDENT
MODULE MODULE GENERATOR OPTIMIZATION

M0DULF: NDULF

SUBMODULES SUBMODULES SUBNODULES SUBNODULES

Figure 2. Modular Decomposition of a

Multiple Pass Compiler

(2) The chief programmer responsible for each module.
(3) Plots of the mutant elimination percentage vs. time for each submodule.
(4) For each submodule, (a) the number of mutants, (b) the number and the

percentage of eliminated mutants, (c) the number and percentage of mutants
deemed equivalent, and (d) the number and percentage of non-eliminated
mutants.

(5) For each module, the number and type of assigned personnel.
(6) For each submodule, the number and type of assigned personnel.

This information can be used by the project manager to help do the following;

(1) Monitor adherence to the project's testing pert-chart.
(2) Decide whether an acceptable level of testing has been obtained for a

given module or submodule.
(3) Re-assignment of personnel to work on modules where the mutant elimination

percentage is low.
(4) Rewarding personnel who achieve high mutant elimination percentages.
(5) Pinpointing responsibility for modules which fail after having been judged

acceptable.

chief Programmer's Report
A chief programmer should be familiar with the program code of all the submodules

but he doesn't necessarily do any of the programming himself. He meets daily with his
subordinate personnel. The type of information contained in a chief programmer's
report would include:

(1) The names and program code for each submodule of his module.
(2) The personnel assigned to each submodule.
(3) Plots of the mutation elimination percentage vs. time for each submodule.
(4) The mutant operators being applied to each submodule.
(5) For each submodule, (a) the number of mutants, (b) the number and the

percentage of eliminated mutants, (c) the number and percentage of mutants
deemed equivalent, and (d) the number and percentage of non-eliminated
mutants.

(6) Listings, in coded forms, of mutants determined equivalent.
(7) Personnel responsible for classifying mutants as equivalent.

This information can be used by the chief programmer to do the following:

(I) Suggest to the programners additional mutant operators for a given
submodule.

(2) Ask a programmer to justify his judgement of mutants as equivalent. The
chief programmer may want to know, for instance, why it does not matter
if a certain variable can be mutated without changing the effect of the
submodule. That is, why is his submodule so insensitive to that mutation?
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(3) Determine that a given submodule has been acceptably tested and
prepare evidence on this decision for presentation to the project
manager.

Programmer's and Tooter's Report
Theae personnel are concerned mainly with the details of program code and data

and th~us their reports will be the most lengthy. The type of information would
include:

(1) A listing of the submodule code.
(2) The current test data for the subwodule.
(3) The mutant operators currently being applied to the submodule.
(4) For the aubmodule, (a) the number of mutants, (b) the number and the

percentage of eliminated mutants, (c) the number and percentage of mutants
deemed equivalent, and (d) the number and percentage of non-eliminated
mutants.

(5) Profiles of the information in (4) with respect to the mutant operators
currently being applied.

(6) Listings, in coded forms, of the non-eliminated mutants.
(7) Listings, in coded form, of the mutants determined equivalent.

This information could be used by programmners and testers to do the following:

(1) Augment the current test data so as to eliminate mutants on the next
mutation run.

(2) Augment the act of applied mutant operators for the next mutation run.
-(3) Classify non-eliminated mutants as equivalent.

(4)- Determine that the submodule has been adequately tested and prepare
evidence of this for presentation to the chief programmer.

- SOFTWARE PROCURMENT ASPECTS OF PROGRAMi MUTATION
Government agencies and profit making industries are currently finding that pur-

chasing software from specialized software vendors is more economical than in-house
development. The contracts generally con%.st of the specifications for the software
and a date on which the software and test data on which the software meets the speci-

- fications are to be delivered. Occasionally, some test data is given with the speci-
f ications.

Two problems for the contractor are apparent in the above scheme: (1) at any
time during the contract period the puchaser has no indication as to how 'close" the
software is to being ready, and (2) upon delivery, although the software works correct-
ly on the supplied test data, there is no way to measure the quality of the purchased
software. We see program mutation as a partial solution to the first problem and a a
definite solution to the second.

Since program testing is the final stage of software development, a contractor
can specify that the vendor iondicate at what point testing commsences. Assuming that
the vendor is using a mutation system, the contractor can monitor the final stage of
development by having the vendor periodically report mutant elimination percentages.

To evaluate the delivered software, on~a can specify in contracts that the test
data of modules must eliminate a certain percentage of the mutants with respect to

- "standard" mutant operators. Here there are many options. Software not passing this
quality test may be rejected or there could be a substantial financial penalty to the
vendor. In this case it is not essential that the vendor use a mutation system, only
that the contractor have one available to evaluate the final product. Also, note that
the contractor in not concerned with equivalent mutants; rather, a simple test (which
can be entirely computerized) dependent solely on the mutant operators is used. Cur-
rently, we have little information on which mutant operators should be employed in this
test; however, experiments to answer this question are underway. We have observed
empirically (13,15) that the percentage of equivalent mutants tends to be about two.

SUMMARY
Program mutation is an important new tool in the field of program testing which

has applications in other fields. Above it has been explained how, unlike other cur-
- rent programming methodologies, a program mutation system can provide quantitative

information which can be used throughout the management hierarchy of a large programs-
ming project. Furthermore, program mutation has an important application in that it
can be incorporated into contracts for software procurment. It provides purchasers of
software with a meane of measuring the quality of the delivered product.
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STABILITY OF TEST DATA FROM PROGRAM MUTATION

James E. Burns
School of Information and Computer ScienceI GEORGIA INSTITUTE OF TECHNOLOGY

Atlanta, GA 30332

1 1. INTRODUCTION

Program testing is an expensive part of program development. A

significant portion of this cost may go into the creation of high Quality

~~- I test data. In an active environment, it is rare for a program to £*

unmodified over a long period. Considerable effort can be saved if test

data created for earlier program versions can be shown to be satisfactory

I for testing new versions.

The second section of this paper briefly introduces a promising

I new tool for program testing, program mutation. Program mutation has

the attractive qualities that it aids in finding good test data sets

- and also provides a quantitative measure of how good they are. Section

* I 3 describes the experiment performed to test the hypothesis that test

data produced by program mutation tends to be stable. The final two

I sections give the results of the experiment and draw conclusions.

.1 2. PROGRAM MUTATION

:Program mutation is a recently developed technique for creating

I high quality test data. A brief description of the technique is given

here, but the reader is referred to references [1-4] for a more complete

explanation, -especially regarding motivation.

I This work was supported in part by U.S. Army
Research Office Grant #DAAG29-78-G-0121.
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The central idea of program mutation is the construction of a

set of "mutants" of the target program. A mutant is a copy of the

target program which differs only by a single "mutation". A mutation

is a transformation of a program statement in a way which simulates

typical program errors. For example, one mutation is to modify the

value of a literal constant - the FORTRAN statement "I = 1+3" might

be changed to "1= 1+2". Some mutants may turn out to be equivalent,

functionally, to the target program. The remainder should be distin-

guished from the target program by sufficiently powerful test data.

Test data which is able to distinguish all non-equivalent mutants of

a target program must thoroughly exercise the program and, hence,

provide strong evidence of the program's correctness.

Let P be a program and M(P) be the set of mutants of P.

(Note: M(P) depends on the language of P and the set of mutations

chosen. We assume a fixed language and a fixed set of mutations

for purposes of discussion.) Let Q(P) be the subset of M(P) that

are functionally equivalent to P. For a given set of test data, 7,

an element mcM(P) is said to be e2-imated by7 if and only if

there is at least one element of T which distinguishes m from P,

otherwise, m is said to be Lue. Now we may define theadequacy o6

T 6o4 P by
M(P) - L(TP) - Q(P)

A(T,P) = lO0%x
M(P) - Q(P)

where

L(T,P) = { mcM(P) m is live for P under 7)

When A(T,P) = 100%, we say that T is adequate for P. If no element of

T can be removed without reducing the adequacy of 7, then T is said to

be teu dwed.

325
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Adequacy provides a quantitative measure of the thoroughness
with which a set of test data exercises the target program. Unfor-

tunately, this measure may be difficult to compute since Q(P) is

usually difficult to determine. However, the following approximation

to A(T,P) is usually sufficiently accurate since, (empiriciaily), Q(P)

is rarely greater than 5% of M(P):
A'(TP) 10% x M(P) - L(T,P)A'(T,P) - 100% 'x

M(P)

Note that*A'(T,P) always approximates A(T,P) from below. Also, if

part of Q(P) can be easily determined, the approximation can be

improved.

3. STABILITY OF TEST DATA

Intuitively, the stability of a set of test data refers to how

powerful it is in testing programs which are slightly modified versions

of the program for which the test data was developed. The adequacy

measure gives a means of quantifying this concept with the following

definition.

Let P be a set of closely related programs, (P1 ,P2 ... ,Pn}.

Assume that all the programs in P will correctly accept the same

set of test data, T. Then the .6tabZ&ty oj T etaivue to P is given

by

6 S(T,P) min A(T,Pi)

1 i <_

We also define an approximation to this measure by

S'(T,P) min A'(T,Pi)

32C
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The stability of T is, of course, highly dependent on P. We

wish to determine whether or not test data produced by program mutation.

is relatively stable for P chosen to be sufficiently "similar" to

the program for which the test data was created. For this experiment,-

ten sorting algorithms were chosen, (see Appendix A). Since these

programs are functionally identical, they are certainly highly siinila'-.

There is some motivation for using functionally identical programs in

this study since one type of program modification is the replacement o-'

an algorithm with a functionally identical but more efficient one.

If test data produced by the program mutation method is stable, high

values of the stability measure would be expected. More complex

algorithms would be expected to have higher values of the measure

since they would tend to require stronger test data.

Each of the algorithms listed in Appendix A was coded into theI

subset of FORTRAN accepted by the Pilot Mutation System (PIMS) developed

at Yale University. PIMS automatically generates the set of mutants which

are to be eliminated by test data. Test cases may be entered inter-

actively and tested by the PIMS interpreter against the mutants. The

living mutants may be examined through the system to aid in selecting

additional test data.

Test data was developed for each program in the set independently.

An attempt was made in each case to eliminate all mutants which could no',

be identified as being functionally equivalent to the original program.

(In all but three cases, all non-equivalent mutants were eliminated.)

The resulting test set were then reduced to remove any inessential test

cases. Finally, the test set for each program was run against each of

the other programs to determine the number of mutants eliminated in each

case.

.j27
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- 4. RESULTS

i The raw results of the experiment described above are presented

in Table 1. The programs are ordered by the number of mutants produced

by PIMS, which is a rough measure of t..eir complexity. Table 2 gives

the number of living mutants left by each test set with all mutants

S which could be determined to be equivalent removed. The adequacy

measures, A'(T,P) and A(T,P), and stability measures, S'(T,P) and

S(T,P),are given in Tables 3 and 4.

Two sets of test data, (I and J, produced by Quicksort and the

Natural Two-way Merge Sort), provided very strong test data with stability

Smeasures of over 98%. In fact, the test data from Quicksort was able

to eliminate more mutants of the Merge Exchange (H) and the Natural

Two-way Merge Sort (J) than the data created using the PIMS system

directly. This may result in part from the large number of test cases

(14) required by Quicksort.

The remaining test sets did not produce impressive stability

measures over this set of programs, although Heapsort (F) did achieve

a respectable 88.6%. However, if the two most complex programs (I & J)

, are removed from the set used to compute the measure, all of the

test sets have stability measures near 90%.

5. CONCLUSIONS

I1 all of the test sets produced in this experiment had proven

5to have had very high stability measures, we could conclude that there

was evidence that test data from program mutation was stable. This

428



96

TABLE I

Number of :.ive Mutants

Program / , of Mutants

A B C D E F G H I J

Test Set (f cases) 17 240 266 274 282 830 1094 1233 1838 2292

A (4) 8 11 9 12 15 128 "78 168 567 1104

B (6) 8 8 6 10 15 127 71 159 547 1087

C (5) 8 10 6 9 10 98 71 154 421 1094

D (5) 8 11 7 9 8 52 72 142 548 555

E (4) 10 15 12 13 8 56 81 166 788 563

F (8) 8 9 6 9 8 23 69 75 247 300

G (6) 8 9 7 10 8 79 50 152 409 1084

H (5) 8 8 6 9 8 25 68 42 246 517

1 (14) 9 8 6 9 8 24 50 32 132 54

J (6) 10 12 7 10 8 25 55 43 193 74

TABLE 2

Number of (Live - Equivalent) Mutants

Program

Test Set A B C 0 E F G H I J

A 0 3 3 3 7 105 28 138 439 1061

B 0 0 0 1 7 104 21 129 419 1044

C 0 2 0 0 2 75 21 124 293 1054

D 0 3 1 0 0 29 22 112 420 512

E 2 7 6 4 0 33 31 136 660 520

F 0 1 0 0 0 0 14 45 119 257

G 0 1 1 1 0 56 0 122 281 1041

H 0 0 0 0 0 2 18 12 118 474

I 1 0 0 0 0 1 0 2 4 11

3 2 4 1 1 0 2 5 13 65 31

329
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TABLE 3

Approximation of Adequacy % A'(T,P)

Program

Test Set A B C 0 E F G H I J IS'I(T,P)

A 95.7 95.4 96.6 95.6 94.7 84.6 92.9 86.4 69.2 51.8 51.3

B 95.7 99.2 97.7 96.4 94.7 84.7 93.5 87.1 70.2 52.6 52.6

C 95.7 95.8 97.7 96.7 96.5 88.2 93.5 87.5 77.1 52.3 52.3

D 95.7 95.4 97.4 96.7 97.2 93.7 93.4 88.5 70.2 75.a 70.2

E 94.7 93.8 95.5 95.3 97.2 93.3 92.6 86.5 57.1 75.4 57.1

F 95.7 96.3 97.7 96.7 97.2 97.2 93.7 93.9 86.6 86.9 86.6

G 95.7 96.3 97.4 96.4 97.2 90.1 95.4 87.7 77.7 52.7 52.7

H 95.7 99.2 97.7 96.7 97.2 97.0 93.8 96.6 86.6 77.4 77.4

1 94.7 99.2 97.7 96.7 97.2 97.1 95.4 97.4 92.8 97.6 92.8

_ J 94.7 95.0 97.4 96.4 97.2 97.0 95.0 96.5 89.5 96.8 89.5

TABLE 4

Adequacy % A(T,P)

Program

Test Set A B C D E F G H I J S(T,P)

A 100 98.7 98.8 98.9 97.4 87.0 97.3 88.5 74.3 52.8 52.8

B 100 100 100 99.6 97.4 87.0 98.0 89.3 75.5 53.6 53.6

C 100 99.2 100 100 99.3 90.7 98.0 89.7 82.9 53.1 53.1

- 0 100 98.7 99.6 100 100 96.4 97.8 90.7 75.4 77.2 75.4

E 98.9 97.0 97.6 98.5 100 95.9 97.0 88.7 61.4 76.9 61.4

- F 100 99.6 100 100 100 100 98.7 96.3 93.0 88.6 88.6

G lO0 99.6 99.6 99.6 100 93.1 100 89.9 83.6 53.7 53.7

H 100 100 100 100 100 99.7 98.3 99.0 93.1 78.9 78.9

I 99.4 100 100 100 100 99.9 100 99.3 99.8 99.5 99.4

1 98.9 98.3 99.6 99.6 T0 99.7 99.5 98.9 96.4 98.6 98.3

-- -
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would imply that it would not be necessary to re-analyze a program

every time a small change was made to it. The negative result implies

instead that the test data may not be stable, especially if the change

made to a program increases it complexity. Thus, it is prudent to

perform mutation analysis on revisions to programs; however, it is

likely that previously derived test data will provide a good starting

point for mutant elimination. In many cases it will be unnecessary

to generate any new test cases at all.

331
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Software reliability, program testing

Until very recently, research in software reliability case for realistic examples), this method becomes -

has divided quite neatly into two - usually warring - prohibitively expensive.
camps: methodologies with a mathematical basis and Since, however, a test for reliability rather than a
methodologies without such a basis. In the former certification of correctness is desired, a natural ques-
view, "reliability" is identified with "correctness" and tion is whether or not Howden's method can be im-

the principle tool has been formal and informal veri- proved by settling for less than an exact solution to

fication [I ]. In the latter view, "reliability" is taken (it).
to mean the ability to meet overall functional goals We are inspired by Rabin 161 and, less directly,

to within some predefined limits [2,3]. We have by the many successes of Erdos and Spencer 171 to
argued in [4] that the latter view holds a great deal attempt a probabilistic solution to (i). Using these

of promise for further development at both the prac- methods, we show that (ii) can be tested with proba-

tical and analytical levels. Howden f5] proposes a bility of error c * with only O(g(e)) evaluations of

first step in this direction by describing a method for multinomials, where g is a slowly growing function of
"testing" a certain restricted class of programs whose only e. In particular, 30 or so evaluations should give

behavior can - in a sense Howden makes precise - sufficiently small probability of error for most prac.

be algebraicized. In this way, "testing" a program is tical situations. The remainder of this note is devoted

reduced to an equivalence test, the major components to proving this result.
of which become Let us denote by P*o(m, d) the class of multi-

(i) a combinatorial identification of "equivalent" nomials

, structures;
(ii) an algebraic test f(x1 .  xm) 0

(over some arbitrary but fixed integral domain) whose
A =f2 ,degree does not exceed d > 0. We define

where f, i = 1, 2 is a multivariable polynomial P(mn, d, r) = min Prob{ I <x1 < r, & . x,,,) 0,

(multinomial) of degree specified by the pro-
gram being considered. fE P*o(m, d).

In arriving at a method for exact solution of (ii),
Howden derives an algorithm, that requires evaluation "'

of multinomials f( ... , xm) of maximal degree d at * See Rabin's account of algorithrns that may err with fixed

O[(d + 1)l points. For large values of m (a typical probability 161.

193
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We think of P(m, d, r) as the minimal relative fre- Continuing inductively, we obtain a lower bound

quency with which witnesses to the non-nullity of a in P(m, d. r) as follows:
muitinomial of the appropriate kind can occur in the

chosen interval. We will derive a lower bound p for P(m, d. r) > (I - d/r)m .(I

P(m, d, r). Then (I - p) is an upper bound on the But
error in selecting a random point from the m-cube.

'dom selections to obtain a small probability of error lim (I - d/r)"' = lia 1)m-. m-T m r

(I - p)'. Notice, in particular, that since a polynomial
of degree d has at most d roots(ignoring multiplicity), = e.p(--dm/r)

the largest probability of finding a root must be at

least the probability of finding a root by randomly

sampling in the interval I <xI < r; thus P(m, d, dm) > e- '

P(I, d, r) I - d/r. Thus, with t evaluations off for independent choice\

Now, consider some of points from the m-cube with sides r = din, the
probability of missing a witness to the non-nullity oi

f'(x . ... X, )0 fx .  Xm) is at most

o f degree at most d. But there are then multinomials

fgigld, not all * 0, such that
d Table 1 shows the probable error in testing f - 0

(x I . X, V) =  gi(xI .... . by t evaluations off at randomly chosen points for
i=o some typical values of d, m, r, t. Notice that for

Let us suppose that gk e P,.o(m, d). Thus dm= r, t = 30, this is already <10- s.

Prob( ' 1 x i < r, f(X .. Xm, )O
References

>_ Prob f g(x .  Xm) * 0 and ) is not a root)
Ill Z. Manna, Mathematical Theory of Compu tation

> 1 P(m, d. r)(l - dir). (McGraw-Hill, New York, 1974).

Table I
Probable error in testingf(x1 .... xm) 0 (degree Z d) by r random evaluations in -,.I

1l - P(m.d.r)l'

dIm r 1+ 10 r = 20 r = 30 =50 r= 100

10 I0 10X 10-3 106 x 10
- 6 1 x 10-6 109x 10

- 12 12 x 10-
2 1

20 10 :33 x 10 - 3  54 x 10- 3  13 X 10 - 3  695 x 10
- 6 483 x 10- 9

50 10 935 x 10
- 3  873 x 10

- 3  816 x 10
- 3  713 x 10

- 3  509 x 10
- 3

102 10 -I -1 -1 -1 -1

10 102 61 x 10
- 1 2 <10-20 <10-20 <10-20 -0

, 20 102 38 x 10- 9  I x 10- 1 5  <10-20 <10-20 -0

50 10
2  8g x 10-6 8 x 10-

9  704 x 0- I S  <10-20 <10-20

10
3  102 -1 -I -I -I -I

10 103 <10-20 <10-20 <10-20 -0 -0

20 103  9x 10- 18  
<10-20 <10-20 -0 -0

so 103  76 x 10- 1 5  <10-20 <10-20 -0 -0
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MUTATION ANAIY..' OF DECISION TABLE PROGRAMS

Timothy A. Budi
AlLhaid J. Lipton

Department of Computer Science
Yale University

New Haven, Connecticut 06520

I. INTRODUCTION Informally, the latter condition can be

For years computer programmers have been stated by saying if R is incorrect, it Is in-
correct in a very radical fashion. Of course,

testng rogams n salleat of estdat In the truth and/or utility of such theorems de-

order to infer correctness, on the assumption

that if the program works correctly on a certain ponds very strongly on the predicates and

set of "hard" test data, it will probably work measures chosen. Previous papers on mutation

correctly on any data. Of course, most program- analysis have demonstrated a large body of am-

mere have little more than an intuitive idea of pirical evidence showing that for a very realis

what represents "hard" data. Expressed in such tic problem domain (FORTRAN programs) there s

vague terms, such faith is obviously not well relatively easy to verify predicate and a natural

founded, measure for which that theorem seems to be true
[2]. The present paper presents for the first

*_. Recently interest has increased in formali-
zing the theoretical aspects of program testing 

doman

[4,7]. As in this earlier work, we can give a

formal interpretation to the ideas of program This paper proves analytically a theorem

testing as follows: We can view a program Rt similar to the one described above, but for the

- as being a function from an input domain to an problem domain of decision table programs. In
output domain. For every program R we can section II we formally define decision table

assume there exists a function F which R was programs. In section III we define a measure o.

intended to compute. The correctness question the space of decision table programs, and intro-

can then be phrased as "is R a realization of duce the concept of mutation. Section IV con-

the function F 7" tains the main results of the paper, leading u

Previous work has been directed toward to a formal theorem similar to the one given

above. In section V we comment on the complex-
finding a predicate P over theace of pro- ity of mutant analysis, as opposed to explicit

=- grams and input domains such that, for a given enumeration, and conclude the paper with some
function F and program R , if a set of test
cases T satisfies P(T,R) and R correctly open problems and directions for future resear:h.

computes F on T , then we can infer that R II. DECISION TABLE PROGRAMS
is a realization of F . The results of (41 Decision tables are a method of organizing
show that such a predicate must always exist. Dcso alsaeamto fognznsho that dharednottimplystha gist. rules that specify the conditions under which
However, that does not imply that testing is certain actions are to be performed. Declloneasy: it need not be the case that T is fi-

y nite or that P be decidable, tables are chiefly used in business and data pr,-
cessing applications [5,6], although in [4] tney

To give a more concrete example: For any are used as a means of organizing test data se-
logical expression we can construct a program lection predicates.
which computes the value of that expression e ca tes.

over a set of boolean inputs. Suppose we have Table Program as follows [5,6 . we have first 
such a program and wish to assert that it is the set of n Conditions and a set of p Acticns.

constant function FALSE. Any predicate which se o onditions a d a set of ins.
will satisfy the above will imply that either
1) T must in some cases be exponential in the language, say English or FORTRAN. The actions

size of the program, or 2) P must solve an NP- are given in the same language, and are ass uec

hard problem [1). to be independent; that is, the results of ex-

Given then the difficulty of the task of cuting any subset of the actions are indepndc'r"

finding test data that will without doubt how of the order in which they are executed. (Altcr-

f tthat a program is correct, the goals of mutation natively, we could merely define an ordering cr.
the actions.) The actions are also assumed t,analysis are much simpler. in mutation analysis be detectable; that is. given input and oitput

we define a predicate P as before, and .n .d-

dition we have some data, it is possible to tell precisely what a-dtowehvsoemeasure M of the "syntac- inweeeeueontenptoprdcth
tic dibtance" between programs. The theorem we tions were executed on the input to produce the
then hope to prove is: Giveii a function F a;.d output.

The decision table itself is then composed
program R then if a set of test cases r sat-
isfies P(T,R) and R correctly computes F or; of two matrices: an n by m condition matrix

T then either 1) R and a p by m action matrix. We say the pr,
of F , or J R is i trrermfthe eas n gram contains m RULES where each rule corres-

pd t co etn o cl sfR is (in terms of the measure)
very far away from ALI. programs that correctly ponds to a cross section along columns of the

relale .condition and ac:tion matrices.
relaize i4
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FVITI.-I It5 S )f the~ Ciot LIJ In itI IX .itaII I VA h-W,,'t J1.. eu aepde Ly a tp
t thrtee value.r, Y, N it *(read YES,, NO Iise hllJIS-.:- It a tyJe 2 harfgt' IS made' he set. -

3:, rsii'. , r CARE) . kieertb L ti., action mati !X .t values , ... !ttify thu ornditior's of the
I! nif Oi.C of two values: X I liank. tnqiiaun I.I-'; - ''tal .y iisj,,unt fzxit' tl,.
l, execute the'- pro-ritii -i selectea data whutic, , il ty 0,. al t 1rc 1- jir Note al so

tit we proceed as :olicows: firtst we evaluat, tiat. I 1, ti.. asIumpti. it Lt detectability. in type -

ei *': uo the conditions on the data, forming a 4 cing'q ui pro0duce ad. -. ivalent mutant. if
v,. !,.r of size It , o)tasnIn4 YEb,'Nu values. any -' - I.. ! nt t tant ,at. be produc ed Ly t tyj e
a.- then consider eachi of the M rul he (In sorme 1 cho it be t ,. , mitant and rel ~a t the

_i jecified Lrder) -If any rule is SATISF'IEDj previoris r &dire. After a kounded nai~iber (if-
Ie sense that fI.r each 1-it iori inI the t- . *ns, we t h.: hi-tve a program P equi -

i L. that contain%. a Y the data :,itisfies thev vilbtat f,,t: Irir tal sri I thait the o-nly e#rquc-
i!.ated condition, and fa;l:h to satisfy the' VelenI' mu- . of ' art P ei-t. by a type 3

::lt~5abs i ated with a N, then the act 1,1 1 .
nrof the rule is executed. a111 I ac'j.' ishe'dp tht' J-r0cedUrt, Lie,, rIied

I! for each possible dat.a ite~w there L at !I- ;tovi.uou!s pdrayr aph, w,- .inbtr~ rt a --..
i, I-t one rule that can be satiusfied we say tlie -ti -1-u h1 that ever,- mut aut that i:,net e-lui-

dr - .,in table is COMPL.ETE. We say it is COIN- Vaie'nt t- P differs era at least one data point-
.,!SVENT if there is at most one rule. There d in Tr . We shall have more to say about the

i- 'tichanical methods to determine whether an cusr teaof T in section IV. Such A test
nriaydecision table program is complh'te set is cal led adequate in [2).

..: o cr consistent 151. We will now consider what the construction
We can assume that no two rules specify of such a test set tells us about P-

oxaistly the same set of actions. We can do this IV OPuNSPEUT~utloss of generality since two rules that ~ * ()PINS EUT
s~ ithe same actions can be combined with at In thisj section we will denote the decision

the addition of one new condition row. table I i-nam unider consideration by P . We
*~~~~dn t..,RSADMUAINSr I v; P, the ith, rule, that is, the cross-

E:RRDS AN MUTAIONSsvct,- f the condition arid action matrices
We will say a program ism correct if it cor- taken *~aothe ith columi,.

r iyrealizes the function it was intended to. I-or !ievity we will state the following con-
r-xrgram is incorrect if it is not correct; ditior.- r,n~e. They are' assumed to hold in all
1!! ,, there is at least one point at which theorems _tvcn.

-,I' ro:gram and the function compute differing 1) fis consistent, althoogh it need not
ItS i complete.-

ecivea a decision table program P , let s z) rthe only mutants equivalent to P are
*:I(. set of all decision table programs having produced by a type 3 change.

T: samne conditions, actions and number of rules 0) ramJ element d of the test set T
.11 P .The definition implies that each pro- sijtisfi-s a rule, and the rfusults of P
j: as' in S can differ from P only In the d ire correct.

i ic. it contains iii its mcatrices. XM1:ioeahrl P4, will say a Iprograrr is radically I- nPteeeit
If ot nlydoe itnotcorecty c:n- a data point d in '; satisfying tile conditions

the function it was _niurided to, but no ofP I
r, rdMt in S computes this function either. PROOF: If we assume to the -ontrary that no data

rA :-ically incorrect program cannot just have stem satisfies some rule, then the action por-
a few table entries wrong, buit must be wrong r-i tion af that rule can be mutated in any fashion

i :,onditions, actionrs, or inl the number of with noe perceptible change, contradicting the-
I5it contains. ,Issumptj i concerning the construction of T
Define a subset M of 6 (111 [2) these

at,- .-alted the mutants of P ) to be the set of THEOREMt 1: No program P' in S that differs
jr,;zms oredby akngchage t a inle from P by at least one type 4 change can evalu-

,'ry i., the tables representing P . We car, aeror-l nec aapiti

o. sify these changes into four types as fel- PROOF: The proof is a simple pigeon-hole argo-
w,:~ merit . y l,ermsa 1, tlere is at least one data

iI CHAN-,L: A Y or N entry us chaniged to a item that executes every rule. By assumption,-
iz 1 2 CHIANGE: A Y is charged to a N or vice each. rule', actions are unique and detectable,

versa, hence anry program that evaluates correctly or.
:'Yi-s 3 CHANrIE: A - is chatnged to a Y or N, T mit r lta in at liast the m action parts of
.2, 4 CHANE: Ant X is changed to a blank or P . But icc pr~crram in S can contain more-

vicie versa, rules, hecce the result follows.
Notie bat venif is ompeteand urTi'- i',m I implies ai one-to-one correspon-

tent, members of M rieel not share thi f-as.rls I n uesi n te

It may happet, that cenrtail: members of M 1program 1. s that evalujates correctly on T -
We will u:'- thrs fact irtplicitly in what follows.

h e F-gaIvalet~t to P ,that is, will evalu-
h-n'ially to 1, cri. All inputs. An: fqui- t.IMNMu.' Any I rorarr P' Irn S that is not

34
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t i.t ta V..'a 't w.well k, an iite associated rule it. P'
- on T mn,,t n ota in a' ao. h I." hOJ c j, t , y w: ich iilvow, Ls t., reect d in P' u .

ktsleIt. w* '. r o.r jt'd.e a I, !a--elivat -e dlit. more, ti s change iatlot produce an, eqaiv enz

PP A.)k Assume. that i' di~d 1 dttr , ty mutant. But using Theorems 2 and J this gve

ch i-ges that. by Utlems I v*, construct. ti ulva- us a contradiction.

lent mutants. By constrution, we .'e that P. ombiing Theorems 1-4 then gives us the
and P litter by type I changes. But Lhe fact main result of h-s paper.
that these are equivadlt ctianges implies that
within each rule the cunjunction i- the cundi- THEOREM 5: If P evaluates correctly on

- tions P and P' have in common is sufficient then either P is correct or it is radicall

to imply the conditions at each of the disputed incorrect.

plints, hence P must be equivalent to P' . V. THE COMPLEXITY OF MUTANT ANALYSIS

The remainder of this section is devoted If we think of each of the n condition.,
to showing by cases that there cannot be any as dividing the space of possible test cases in
program P' in S that is not equivalent to two, there are then possibly 2n potential
P but that evaluates correctly on T . categories a test case could fall into. A test

Assume we have a program P' In S that procedure that operated by explicitly constro-
is not equivalent to P but that evaluates cor- ting a representative from each of these cdte
rectly on T . By Lemma 2, there must be at gories might then require an exponential number
least one change between P and P' that if of test cases (in the size of the matrix). We
made to P would produce a non-equivalent shall see that mutation analysis requires sig-
mutant. Let P- be the mutant so formed, with nificantly fewer test cases.
Pi (P-') indicating tue single rule that has It is not difficult to see that if it is
been altered. possible to differentiate a program P frc,,

Theorem I tells us that the change could mutant P* , then It is possible to differ,r.-
not have been of type 4; the next three theorems tiate it with a single test case. Since ,her,
sho. us it cannot have been o! types 1, 1 or 3 are at most 2nm+np mutants, we have the f,1

either. lowing theorem.

THEOREM - Tne differvince between P and P* THEOREM 6: If for a given program P there
cannot be a type 3 change, exists an adequate test set T with respect

PRGCF: Aasume we have a program for which the the mutant operations, then there exists a te!,t

hypothesis hclds but deny the conclusion. Since set T' with no more than 2nm+np elements

P- is not enuivalent to P there exists an that is also adequate.

element d in T such that P(d) and P*(d) The theorem is strengthened by the fact
differ. But this can only happen if d sats- that the constructive method of mutant testins.
fies the conditions associated with P1  out not that is, choosing a mutant and finding a test

- those of P*1 . But one can see then tLat no case to eliminate it, results in a test set of
other change that can be made to P*i will no more than the indicated size. Furthermore,
allow d to satisfy its conditions. since it is probable that the test set w'll be much

P(d) executed the correct acti,.ns and ;no other smaller, since empirical evidence suggests that
rule have the same actions, a contradiction is a single test case may eliminate a large nuiler
obtained, of mutants (3].

THEOREM j; The difference between P t;'! P* VI. CONCLUSIONS
cannot be a tyke 2 itaije. In this paper it has been shown that by
PROOF: Assume as before we have a program for using mutation analysis a relatively small se-
which the hypothesis ii tr ie but deny the con- of test cases (ltnear in the size of the den-
clusion. By Lemma 1, there exist. bom,' element sion table, versus exponential for explic:t
d in T that !,%tisfies th.. conditioin in the enumeration) can be used to infer a very str*,.:
original r-ile. bince ,1 idnut posbiuly satis- tconclusion concerning the correctness of a pi
fy any ruie trat in~iudeb tle change .nder con- gram. We can show, using our methods, that i"
sideratin, the fact that we were satiffid with a program satisfies these test cases then if _t
the actions of P on d and no otha-m rules can is incorrect, it is incorrect in a very drarat::
have these same actiins gives us a contradiction, fashion, and it may be possible, using other

THEOREM 4; The difference betweer. P ir.d P* methods (say specification), to insure than

cannot be a typl. 1 change. this is not the case.
This result is in striking contrast to t:.,

PROOF: Assume we have a program tn w:.ichi the usual view, which holds that testing is of el-
hypothesis is true but deny the conclusion. By most no help in showing a program correct. In
construction, there exists an element d i ' r view of the complex problems associated with
such that P and P* differ, but thi, an only program proving, we fell it makes good econim ,
mean that d satisfies P, ano 11ot "I . sunse to investigate the capabilities of test::,
Since we were satisfied with P(d) there must performed in a systematic and rational fashis:..
exist at least one more change of type . r 3 These results suggest a paradigm for re-

14)4
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.cdt!Ie I Iofutile I nflove- jt L uyrimlninq. 11o .sA 1

) tes for futuor , crk alie lxnear recurrerve-
0 ISP type functions) .ctr paitial recursiv"

On the other hdld in 12J a numtber of em-
i ri-il observations ot FORTRAN programs ate
1: vo that fortify rile hopct toat a theory dlcng

'11 nes of the oile prese'nted heite might be
Nv-.Iope) tor that. problemt domain.

Takon all tocwthet, tlis data auq(qests that -

i: the future mnutation ana)',sis may become Ani
cn~ortant neow tool in the field of program
txistl gq
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1. INTRODUCTION

An idea proposed in [1) is the concept of pro-

ving individual programs correct with respect to

some larger class of programs. That is, instead of

proving a program correct we prove that either a)

the program is correct, OR b) no program in this
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class realizes the intended function. It is assumed

that most programmers at least know if the function

they are trying to compute can be realized in some

large class of programs, and therefore from a

theoretical point of view the introduction of this

disjunction may make the task of validating programs

vastly easier.

A previous paper has analysed programs written

in a decision table format [4]. In this paper we

will be concerned with lisp programs composed of

CAR, CDR and CONS with lisp predicates composed of

CAR, CDR and ATOM. Similar classes of programs have

been studied in [5,6,7).

Associated with each S-Expression X we can con-

struct a binary tree as follows: Consider the infin-

ite binary tree where each left arc is marked CAR

and each right arc CDR (call this the complete

CAR/CDR tree.) Starting with X at the root of the

tree, travel down each arc in turn taking the

appropriate CAR or CDR. Prune the compljte tree each

time you reach an atom. The resulting finite binary

tree will be called the projection of X (or

PROJ[X]). An example is shown in figure 1. Notice

the PROJ[X] is a representation of the structure of

X, and in invariant under the renamings of the atoms

of X.
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3 We can Jefine a relation < as follows. Given

two S-expressions X and Y we will say X < Y if

3 PROJ[x] is the intersection of PROJ[X] and PROJ[Y].

Using tnis relation one can show the set of lisp

structures form a lattice. (The proofs can be adap-

I1 ted from Summers[7], although he defines the projec-

tion slightly differently.)

We will make the convention that all S-

- I Expressions (we will use the less clumsy expression

i point ) have unique atoms. Certainly if two programs

I agree on all such points they must agree on all

I inputs. Hence we can do this without loss of gen-

erality._i
We will call a lisp program a Selector program

if it is composed of just CAR and CDR. We will call

it a Straight line program if it is a selector pro-

gram or is formed by CONS on either selectors or

j other straight line programs. We will call it a

Predicate program if it has the following form

.- COND(ATOM(Gi(X)) -> PI(X)

T -> P2 (X)

- Where the G's are selectors and the P's are straight

line programs or other predicate programs.

Assume we have a function F which we know can

,e computed by a program in some schemata class S.

---
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We have a program P in S which we wish to show com-

putes F. We assume we have some method of verifying

that P(X)=F(X) on a finite number of test cases (say

by hand calculation.) We wish to show that there

exists a finite set of test cases T such that if P

correctly computes F on every element of T then

either 1) P correctly computes F for all inputs, or

2) no program in the schemata class S correctly com-

putes F. This goal is similar to that of mutation

analysis [1-±].

Call such a test set Adequate.

We then wish to discover conditions under which

we can construct adequate test data.

2. STRAIGHT LINE PROGRAMS

We will say a program P(X) is Well formed if

for every occurrence of the construction CONS(A,B)

it is the case that A and B do not share an immedi-

ate parent in X. The intuitive idea of the defini-

tion should be clear: a program is well formed if it

is not doing any more work then it needs to. Notice

that being well formed is an observable property of

programs, independent of testing.

We can define a measure of the complexity of

straight line programs by their CONS-depth, where

377



CONS-depth is defined as follows:

1) The CONS-depth of selector function is zero.

2) The CONS-depth of a straight line program P(X)

- CONS,.P1(X),P 2 (X)) is I+MAX( CONS-

depth(P 1(X)), CONS-depth(P 2))).

LEMMA 1: If any two selector programs compute

identically on any point X, they must compute

identically on all points.

PROOF: The only power of a selector program is

to choose a subtree out of its input and return

it. We can view this process a selecting a

position in the complete CAR/CDR tree and

returning the subtree rooted at that position.

Since there is a unique path from the root to

this position, there is a unique predicate

which selects it out. Since atoms are unique by

merely observing the output we can infer the

subtree which was selected. The result then

follows.

LEMMA 2: If two well formed programs compute

identically on any point then they must have

the same CONS-depth.

PROOF: Assume we have two programs P1  and P2

and a point X such that PI(X) P2 (X) yet the

CONS-depth(P1 ) < CONS-depth(P 2). This then

]a
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implies that there is at least one subtree in

the structure of P2 which was produced by CON-

Sing two straight line programs while the same

subtree in P1(X) was produced by a selector.

But then the objects P2 CONSed must have an

immediate ancestor in X, contradicting the fact

that P2 is well formed.

THEOREM 1: If two well formed straight line

programs agree on any point X then they must

agree on all points.

PROOF: The proof will be by induction on the

CONS-depth. By lemma 2 any two programs which

agree at X must have the same CONS-depth. By

lemma 1 the theorem is true for programs of

CONS-depth zero. Hence we will assume it is

true for programs of CONS-depth n and show the

case for n 1.

If program P1 has CONS-depth n+1 then it must

be of the form CONS(P 1 1 ,P 12 ) where P11 and P1 2 have

CONS-depth no greater then n. Assume we have two

programs P1 and P2 in this fashion. Then for all Y:

P1 (Y) = P2(Y) IFF

CONS(P 1 1 (Y),P 12 (Y)) = CONS(P 2 1(Y),P 2 2 (Y)) IFF

P 1(Y) = P2 1 (Y) and P12 (Y) = P2 2 (Y)

Hence by the induction hypothesis P and P2

-7G

~
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must agree for all Y.

We define a test point to Generic if by itself

it constitutes an adequate test set as defined in

the introduction.

Corollary: For any well formed straight line lisp

program, and unique atomic point for which the func-

tion is defined is generic.

3. PREDICATE PROGRAMS

We can view the structure of a predicate pro-

gram as a binary tree. Associated with each interior

node is a predicate and associated with each leaf is

a straight line program (see figure.)

We will call a predicate program Well formed if

1) each of the straight line programs associated

with each leaf are well formed, and

2) for each leaf on the space of all possible

inputs there is at least one item which passes

all conditions leading to that leaf and causes

the associated straight line program to be exe-

cuted.

Notice that whether a program is well formea or

not is an observable fact independent of testing.

PO3
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For notation we will denote the leaves going

from left to right by 1.i =1,. .n. Let ei i=1,..n be

the set of straight line programs associated with

the leaves. We will assume that for no i,j iij is it

the case that ei is equivalent to e. Notice again

theorem I gives us an effective method to test this.

Given a well formed predicate program P is S we

construct a set of n data points d1 , .. dn such

that di follows the path to leaf 1. and executes the

program ei correctly. Call this set T1 . There is an1I
obvious effective procedure to generate such a test

set.

LEMMA 3: Given any well formed program P in S which

evaluates correctly on each element of T, at least

one data point di in T must exercise every straight

line leaf program in P'.

PROOF: Assume we have a program P' satisfying the

hypothesis but for which the conclusion is false. By

the pigeon hole principle there must be at least two

points di and d. which were evaluated by different

leaves in P but which are evaluated by the same leaf

in P'. Let f denote the straight line program which

evaluates these points in P. Since the d points are

generic this implies that e1 is equivalent to f. But

also e. is equivalent to f. Hence ei must be

equivalent to e. which is a contradiction.
I
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-orollary: Given any well formea program P in S

which evaluates correctly on each element of 7, the

leaf programs of P' are simply a permutation of

those of P.

It might seem that exercising all the paths of

P' is sufficient to show it is equivalent to P. But

this is not the case. We might simply have con-

sistently chosen the right path for the wrong

reason. To rule out this possibility requires a more

stringent set of test cases. We construct this test

set in the following manner.

For each leaf Ii and for each element dj in T

construct a point dii in the following way. Consider

the infinite CAR/CDR tree. color each point RED

wnich is testet and found to be atomic on the path

leading to the leaf I. Color the points which are

-tested and found to be non atomic BLUE. As long as

it is not contained in a subtree rooted at a red

poin t and :oes not contain a blue point in its sub-

tree, color a point red if it is atomic in d. AS

long as it is not contained in a subtree rooted at a

red point, color a point blue if it is not atomic in

.ij is then the smallest unique atomic point

Anere the red colored vertexes are atomic and the

olue vertexes non atomic.
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Denote by T the set 7 augmented with these

points.-

THEOREM 2: Any well formed program P' in S which

agrees with P on T must agree with P on all points.

PROOF: Assume we have a program P which satisfies

the hypothesis, yet there is a point X such that

P(X) and P'(X) differ.

The point X must be evaluated by some leaf 1

in P, hence it must satisfy all the constraints

associated with that leaf.

This point is also evaluated by a leaf program

e In P'. By lemma 6 some data item d. in T also

executes this leaf program. This implies that no

matter what the constraints are on this path in P'

(and we make no assumptions about what they might

be) they cannot interfere with the constraints along

the path leading the 1li*-

But this then necessarily implies that point-

d.i would be evaluated by e.i in P and e k in P' where

K to i. Since d jis also generic using the ear-

l.ier theorems a contradiction is obtained.

Corollary: There is an effective procedure to con-

struct an adequate test set for predicate programs.

33
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4. RECURSIVE PROGRAMS

We will define a class of programs (d ) as

follows:

The input to the program shall consist of two sets

of variables: Sele.stor variables , denoted x1.

x and Constructor variables, denoted yl, ...y.

a program will consist of two parts, a prog$ m body

and a recurser.

A pr2oEa body consists of n statements, each sta-

tement composed of two parts. The first art is a

Predicate, of the form ATOM(t(xi)) where t(x) is a

selector function and xi a selector variable. The

second part is a straight line output function over

the selector and constructor variables.

A recurser is divided into two part3. The construc-

tor part Ls composed of p assignment statements for

each of the p constructor variables where Y. is

assigned a straight line function of the selector

variables and yi" The selector part is composed of m

assignment statements for the m selector variables

so that x. is assigned a selector function of

itself. The following diagram should give a more

intuitive picture of this class of programs.

Program P(x.....xm,y 1 ... y p

P (x 1) -> f (Xl .... X M,Yl,...y p
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P ( -> f2(x 1  .. Xm yp...Y

2i2 p-
Pn (xin -> fn (Xl....×mYj .... Yp)

Yi <- gl(y1'x1''''Xm )

y - gp(YpXl,...x m)

x - h1 (xI)

(- h (x)mm < hm )

Given such a program, execution proceeds as follows:

Each predicate is evaluated in turn. If any predicate is

undefined so is the result of the execution, otherwise if

any predicate is TRUE the result of execution is the

associated output function. Otherwise if no predicate

evaluates true then the assignment statements in the

recurser and constructor are performed and execution con-

tinues with these new values.

We will say a variable is a predicate variable if it

is tested by at least one predicate. Similarly it is an

output variable if it is used in at least one output

function. A variable can be both a predicate and an out-

put variable.

We will make the following restrictions on the pro-

grams we will consider:

1) every recursion selector and every constructor must be



-11
non trivial.

1 2) every vari.able is either a predicate or an output

varijable.

3) there is at least one output variable

4) (freedom) for and I(k~n and 1.>0 there exists a set of

inputs which cause the program to recurse I times before

correctly exiting by output function k.

_ 1 5) each output function is unique.

6) every constructor variable appears totally in at least

g one output function.

Given a program P in & ylet 6 be the union of 0

= for i=l,n.

Let us assume we know, on independent grounds, that

a correct program F exists in 6, furthermore that no

predicate, output function, selector or constructor in P

has a depth greater then some constant u>3.

GOAL: We wish to construct a set of test inputs with the

property that any program P in 6 which executes correctly

on these values must then be equivalent to P .The

existence of such a test set would then imply (under the

assumption that at least one correct program exists in 0)

that P is correct.

We will use capital letters from the end o f th e

alphabet (X, Y and Z) to represent vectors of inputs.
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Hence we can refer to PX) rather then

P(x1,...,Xmy I .... yp). Similarly we can abbreviate tne

simultaneous application of constructor functions by C(XV

and recursion selectors by S(X).

We will use the initial greek letters to represent

positions in a variable, where a position is defined by a

finite CAR-CDR path from the root. When no confusion can

arize we will frequently refer to "position d in X

whereby we mean position d in some xi in X.

We can form a lattice on the space of inputs by say-

ing X <Y if and only if for all selector variables xi in

X are smaller then their respective variables in Y, and

similarly the constructor variables.

We can define the notion of 'Pruning X at position

d' as follows: We will say Y is X "pruned at position

if Y is the largest input <X where c( is atomic. This pro-

cess can be viewed as simply taking the subtree in X

rooted at d and replacing it by a unique atom.

If a position d (relative to the original input) is

tested by some predicate we will say that the position in

question has been touched.

The assumption of freedom asserts only the existence

of inputs X which will cause us to recurse a specific

number of times and exit by a specific output function.

387
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Dur first lemma snows that this can be made constructive.

LEMMA I. Given 1) 0 and 1 < i < n we can construct an

input X such that P(X) is defined and while executing X P

recurses I times before exiting by output function i.

PROOF: Consider md-p infinite trees corresponding to the

m+p input variables. Mark in BLUE every position which

is touched by a predicate function and found to be non-

atomic in order for P to recurse 1 times and reach the
.th
i preaicate. Then mark in RED the point touched by tthe

th
1 predicate after recursing 1 times.

The assumption of freedom implies that no blue ver-

tex can appear in the infinite subtree rooted at the red

vertex, and that the red vertex can not also be marked

blue.

Now mark in YELLOW all points which are touched by

constructor functions in recursing 1 times, and each

position touched by the i output function after recur-

sing 1 times. The assumption of freedom again tells us

:nat no yellow vertex can appear in the infinite subtree

rooted at the red vertex. The red vertex may, however.

also be colored yellow, as may the blue vertexes. it is

a simple matter to then construct an input X such that

1) all BLUE vertices are non atomic in X,

2) The RED vertex is atomic. and

3) all YELLOW vertexes are containeC in X (tney may be

38,
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atomic)

It is trivial to verify that such an X satisifiez

our requirements. A

Notice that the procedure given in the proof of

lemma 1 allows us to find the smallest X such that the

indicated conditions hold. If ( is the position touchec

by the i tn predicate after recursing 1 times call this

point the minimal d point, or X .

Freedom implies no point can be twice touched, hence-

the minimal d point is a well defined concept.

Given an input X such that P(X) is defined, let

FX (Z) be the straight line function such that Fx(X) =

P(X). Note that by the property of being generic, FX is

defined by this single point.

LEMMA 2: For any X for which P(X) is defined, we can con-

struct an input Y with the properties that P(Y) is

defined, Y > X and FX i Fy.

PROOF: There exist some constants 1 and i such that on

input X P recursed 1 times before exiting by output func-

tion i. Let the predicate P. test variable x and let s.

be the recursion selector for this variable.

There are two cases, depending upon whether the out-

put function fi is constant or not. If fi is not a con-

389
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ztant tnen since X is bounded tnere must be a minimal k >

I such that the predicate p. (sk (x,)) is undefined.
J

By lemma 1 we can find an input Z which causes P to

recurse k times before exiting by output function i. Let

Y= X union Z. Since Y > Z P must recurse at least as

much on Y as it did on Z. Since the final point tested is

still atomic P(Y) will recurse k times before exiting by

output function i.

It is simple to verify the fact that FXAFY.

The second case arises when fi is a constant func-

tion. By assumption 6 there is at least one output func-

tion which is not a constant function. Let f. be this

function. Let the predicate p, test variable x.. The same

argument as before goes through with the exception that

is may happen by chance the P(Y) = P(X) (i.e. P(Y)

returns the constant value.) in this case we increment k

by 1 and perform the same process and it cannot happen

that P(Y) = P(X). A

LEMMA 3: If P touched a location d, then we can construct

two inputs X and Y such that P(X) and P(Y) are definec,

ana for any P' in 6. if P(X) = P'(X) and P(Y) = P (Y)

then P' must touch c.

PROOF: Let Z be the minimal d point. By lemma 2 we can

- construct an input X such that P(X) is defined, X > Z and

X 4 F Z. Let Y be X pruned at d.

'i "
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We first assert that P(Y) is defined and F Fz . To

see this we note that every point which was tested by P

is computing P(Z) and found to be non atomic is also non

atomic in Y. d is atomic in both, and if the output func-

tion was defined on Z then it must be defined on Y which

is strictly larger.

Now suppose there existed some program P' such that

P'(X) and P (Y) were computed correctly but P' did not

touch d. We see immediately that this cannot happen since

all other positions are either the same in X and in Y or

they exist in X but not in Y. Hence if P'(Y) is defined

it would imply Fx = Fy, a contradiction. A

Define the positions which P touches without going

into recursion to be the primary positions of P.

Given a program P to test our first task is then to

construct a set of test inputs using theorem I which

demonstrate that each of the primary positions must be

touched.

Observe that this set contains at most 2n elements.

We will say a selector function f factors a selector

function g if g is equivalent to f composed with itself

some number of times. For example CADR factors CADADADR.

'4e will say that f is a simple factor of g if f factors g

and no function factors f, other then f itself.

39I
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Let as denote by ji i:l... m tne simple factors of

eacn of the m recursion selectors. That is, for each i

there is a constant 1i such that the recursion selector
ii

1.1

Let q daGCD(a p n.. hm).

Let S be the simultaneous recursion selector where

:he i term is a. Hence the recursion selectors of P

12

can be written as Sq

We now construct a second set of data points in the

following fashion:

- Eor each selector variable

1) x. is an output variable used in output function f

Let be the position first tested by p3 after ?(X) has

recurse to a depth of at least u Then we generate the

rnzmfal polnt.

-2; x. is not an output variable, but is a predicate varn-

3oe. Lt be the first time a psition w~tn oeptn

greater tnen u~ is touched in xi" .First generate the

-ninimal point, then using lemma 3 generate two inputs

4nicn demonstrate that position d must be touched.

Notice that we have added no more then 3m points.

? .. REM 1: If P' is in and P computes correctly cn a!-

-ata points computed so far, then the recursion selectors

P: ?' must be powers of a.
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PROOF: Observe the fact that if xi is an output variable

in P, it must appear as a result in at least one input X

in our test data space, hence if P'(X) is correct x. must1

be an output variable for P' also.

The proof of theorem 1 will then rest on the fol-

lowing two cases.

Case 1. If xi is an output variable. By construction

there exists some X in our test data space such that P(X)

recurses to a depth of at least 3u (MJ2) before exiting

by the jth output function, where xi is an output varia-

ble in f.

Assume that the it h recursion selector in P' is not

a power of ai. Then somewhere before the ith variable has

recursed to a depth of u their paths must diverge.

Once the ith variable steps past the points where

the paths in the two programs diverge it can never have

access to the subtrees used in P by fC in its output.

Hence P' on X must halt before the ith variable has

recursed to a depth of u.

But if that is the case then its output functions

cannot access subtrees rooted any deeper then 2u. By con-

struction the correct output requires trees which can

only be accessed by going at least 3u deep, hence a con-

tradiction is obtained.

Case 2: If xi is not used as an output variable.

191M16 
n



Assume the recursion sejector of x, in P is not a power

of o. Then once tne variaoies x, nave recursed past the

Jeptn u they will be in totally different suttrees of

,.neir input (see figure 3.)

By construction it is requirea that ?" touch a point

whose deptn _s at least 3u. P, must therefore touch this

point before the i th variable Jiverges from the path

axen by P, hence -efre i -.:3 --eached a deptn of u.

But by definition P" cannot touch any points deeper then

2u in this region, hence a contradiction is obtained. A

Theorem 1 gives us a way to aemonstrate that a pro-

gram Q must have the same recursion selectors, up to a

Power, as does P. 4e now wish to derive a rlightly

stronger result. We will show that tnere exists a con-

stant r such that the recursion selectors of P are

exactly sr

Note that by iefinition we kno. that Sr (that is,

tne maximum deptn of any function in Sr) is less then .

THEOREM 2: If P' is in 6 computes correctly on all the

points we have so far computed, then there exists a con-

stant r such that the recursion selectors of P are

exactly Sr

PRGOF: .e know by theorem 2 that the recursion

selectors of P must be powers of o,. For eacn 1<1<m
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construct the ratio of the power of o. in P to that of

ii
P . Let x.i be the variable with the smallest such ratio

anz x. be the variable with the largest. From the fact

that these ratios are different we will obtain a contrad-

iction.

Case 1: x. is an output variable. By construction there1

is an input X such that P (X) must recurse on X to a

depth of at least u2 before outputing by a output func-

tion which uses x. . This implies that P must recurse at1

least u times. Since in comparison to the program P the

variable x is gaining at least one level each recursion
3

we nave that either 1) P'(X) is undefined because x ran

off the end of its input, or 2) P'(X) must halt before it

has recursea to a depth of u(u-1) in xi in which case it

cannot have produced the correct output.

The argument in the case where xi is a predicate

variable, but not an output variable is almost the same

and is here omitted. A

By lemma 3 we know that if P touches a location c(,

then we can construct a pair of inputs with the property

that any program P in 0 which executes correctly on

these two inputs must also touch d. We now present the

converse lemma.

LEMMA A: If P works correctly on the test data so far

constructed, ana does not touch a location (, then we can

395
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:nstruct two inputs ( ana Y witi the property triat ar, y

i in whicn executes correctly Ln all tnis data must

Aiso not touch tne position .

PROOF: Let x.I be the variable containing 1. Let v tne

:naximum aeptn any variable has ootained just after tne

trn recursion selector passes tne aeptn of d. Let X be a

set of complete trees of depth v+2u, pruned at d.

There are two cases, depending upon whetner ?(X) -s

Jefined or not.

Case 1: P(X) is not defined. Assume P' touches c. Let Z

be the minimal d point in P (we neec not be able to con-

struct this point.) We see that Z<X. But this then

implies that P'(X) must be defincc, a contradiction.

Case 2: P(X) is aefined. By lemma I we can construct an

input Z>X so tZat ' F , Let Y be Z prunea at d.

Assume P(X)=P,(X) and ?(Y)=P' 2Y) ana P' touches (.

-f P() is uncefinea we are lone, si:ce P'Ul) us, be

c'efined. So assume P(Y) is ,efine~. n this case, since

coes not tcucn d F,=Fz6F But if P toucnec , tr -

since x<Y we wouli nave FX=FY, a contradiction.

Next we snow that the primary positions of P must

oe exactly those of P.

-et o .. on be an orcering of the Primary posi-

t ons of P sucn that tne depth of tne pcsiton testea by

l i less then or equal to t-he ceotn of that tested Z.

KU
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We know the recursion selectors of P' are Sr  where

<u. This gives us at most u possioilities. For eacn

possibility we proceed in turn as follows:

Assume position o (i = 1,.. n) is not primary ir

P'. We can construct a point which is then tested by P

earlier then o. by imagining the root input was actuall

the result of one recursion, and then looking at the

position oi in relation to tne earlier root (see figure

4.)

Now one of two cases arises. Either

1) the new positi.on is not touched by P, or

2) the new position corresponds .o a position , j<i.

In the first case we can construct two inputs whicl

cemonstrate the position in question must not be touched.

-ne second case immediately rules out S r as the recursion

selector, since by induction o is primary to P anj

hence P' would not by an element of C.

Notice we have increased our test case size by no

more then 2nu elements. The resulting test case then

gives us the following theorem.

THECREM 3: If P (X) = P(X) for X in our test set, then

the primary positions of P are exactly those of P.

- 7
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Notice also tnat by the generic property that this

also implies the following corollary:

THEOREM 4: The output functions of P are exactly those

of P.

Once we have that the primary positions of P are

exactly those of P, we can now return to the problem of

showing that the selector functions of P must oe Sq

Consider each of the alternative possibilities for Sr (no

more then U of them.) Since the rates of recursion of P

an, P' differ, one of three cases must arise. Either

1) P' touches the same point twice (which means P is not

in 8 and is out of the running.)

2) P' touches a point which P fails to touch, or

3) P touches a point which P' fails to touch.

Since we only need to test for the last two condi-

tions we need augment out test case with no more then 2u

points.

we then have the following theorem:

THEORFM 5: The recursion selectors of P' must be exactly

those of P.

Pushing onward we next want to consider the recur-

sion constructors. Once we have the other elements fixed,

'nowver. the constructors are almost given free. All we

?qF
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need do is to construct p data points so that the

oata point causes the program P to recurse once and exit

using an output function which uses the ith constructor

variable. By the generic property and the fact that tne

entire ith constructor variable is then open to inspec-

tion we have the the next theorem.

THEOREM 6: The recursion constructors of P' must be

exactly those of P.

What remains? Well the order in which the primary

positions are tested is the only thing we have not nailed

down. For each primary position d add X to our test

data. We leave it to the reader to verify:

THEOREM 7: The order of predicate evaluation in P. is

exactly that of P.

Counting the size of our test set, we see now that

it contains no more then 3(n~m)+2(p+u+nu) points. Com-

bining all the theorems proved in this section we then

have our main result, which states:

THEOREM: Given a program P in 6, there exists a set of no

more then 3(nm) 2(p+u+nu) elements such that if P i7

any program in 0 which computes the same results on this

set as P does, then P must be equivalent to P.

COROLLARY: Either P is correct or no program in 0

3Q

• '. 1 -
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realizes the intenced function.

5. AN EXAMPLE

The following example, taken from C61, will be used

to illustrate some of the ideas here presented.

The program is given by [6] as follows:

(REVDBL
(LAMBDA (ARGI)

(COND
((NULL ARGI) NIL)
(T (APPEND (REVDBL (CDR ARGi))

(LIST (CAR ARG) (CAR ARGI])

We will translate it into the following form.

REVDBL(X,Y) = ATOM(X) -> Y

Y <- CONS(CAR(X),CONS(CAR(X),Y)))

X <- CDR(X)

Using the formula given in the inain theorem, we see

that a test set exists for this program containing no

more then 20 points. However, if one follows the

arguments given in tnis paper, one finas that actually

tne three points given in figure 5 suffice. This illus-

trates the point that we have actually been rather

!iberal in our counting, and usually a much smaller test

set can be found then the limt stated in our main

result.

U

___________________ - c. *
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The design of a prototype mutation system
for program testing*

by TIMOTHY A. BUDD, RICHARD J. LIPTON and FREDERICK G. SAYWARD
tale Unit'ersas
New Haven. Connecticut

and

RICHARD A. DEMILLO
Gt-,r,/jU 1lU.l" of )i'chn.':gi,
Atlanta. Georgia

INTRODUCTION To this end there is a COUPLING EFFECT which states
that test data on which all simple mutants fail is so sensitive

When testing software the major question which must al- that it is highly likely that all complex mutants must also
ways be addressed is "If a program is correct for a finite fail.
number of test cases, can we assume it is correct in gen- Readers wishing a further exposition of the ideas of mu-
eral." Test data which possess this property is called Ade- tation and substantiation of the assumptions made are re-
quate test data. and, although adequate test data cannot in ferred to References 2 and 10.
general be derived algorithmically.i several methods have
recently emerged which allow one to gain confidence in
one's test data's adequacy. THE SYSTEM

Program mutation is a radically new approach to deter-
mining test data adequacy which holds promise of being a A pilot system has been built to implement mutation anal-
major breakthrough in the field of software testing. The ysis on programs written in a subset of FORTRAN. The key
concepts and philosophy of program mutation have been features of this system are summarized in Figure I. The
given elsewhere,' the following will merely present a brief system itself consists of 10,000 lines of FORTRAN code.
introduction to the ideas underlying the system. and required six man months to design, implement and

Unlike previous work, program mutation assumes that debug.
competent programmers will produce programs which, if Notice we claim the system is man/machine interactive.
they are not correct. are "almost" correct. That is, if a In general an attempt is made to assign tasks to both the
program is not correct it is a "mutant"--it differs from a user and the machine processors which are best suited to
correct program by simple errors. Assuming this natural using their particular capabilities. One way to see this is t)
premise, a program P which is correct on test data T is view the system as a sort of "Devils Advocate". which
subjected to a series of mutant operators to produce mutant when confronted with a program asks very difficult ques-
programs which differ from P in very simple ways. The tions about the motivation behind it ("why did you use this
mutants are then executed on T. If all mutants give incorrect type of statement here, when an alternative statement works
results then it is very likely that P is correct (i.e., T is just as well?"). The job of the human is then to provide
adequate). On the other hand. if some mutants are correct justification (in the form of test data), which will give an
on T then either: (I) the mutants are equivalent to P, or (2) answer to such questions.
the test data T is inadequate. In the latter case, T must be An overview of the structure of the system is given in
augmented by examining the non-equivalent mutants which Figure 2. We point out that the language FORTRAN was
are correct on T: a procedure which forces close examina- chosen for the first implementation merely as a matter of
tion of P with respect to the mutants. convenience since it is in common use and there is a large

At first glance it would appear that if T is determined body of software in existence to experiment on. The heart
adequate by mutation analysis, then P might still contain of the system (roughly that shown within the dotted box) is
some complex errors which are not explicitly mutants of P. however, language independent, and given a sufficiently

general internal form to implement a new language one
* This research was supporled in par by NSF Grant MCS7I446 ad U.S. would merely write a new input/output interface. Projects
Army Research Grant DAAG-20-TS4"3)I. are currently under way to implement mutation analysis on
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INTERACTIVE IF (A .LT. X(2)) 1' 1
MACHINE INDEPENDENT
LANGUAGE INDEPENDENT STRUCTURE
MODULAR DESIGN SCALAR. A]
INTENSIVE MAN/MACHINE INTERACTION

Figure I-Key features of the pilot mutation system [ARRAY1. X]

[CONSTANT.2]

COBOL and C (an ALGOL like language) using the struc- [AOP. SUBSCRIPT]

ture represented by the box contained in the dotted lines. [ROP. L.T ]
An attempt was also made to keep the structure of the

system largely machine independent. The system was orig- [TRF .0]
inally programmed to run on a PDP-10 at Yale University. -
Currently we are in the process of transferring it to a CDC [CAIAR p]
7600 at the Georgia Institute of Technology. [CONSTANT. 1]

A single run of a mutation system divides naturally into
three phases the RUN PREPARATION phase, in which the [ASSIGN.O.
necessary variables to send to the mutation executor are -,gufe
defined, the MUTATION phase, in which the actual muta-
tions are produced and executed, and the POST RUN phase,
in which results are analyzed and reports are generated. In fragment of the internal code generated for a given statement
the following we will describe in more detail the structure is shown in Figure 3.
and effects of each phase. The user is then interactively prompted for the test data

The role of the run preparation phase is to initialize the on which the program and mutants are to be tested. After
various files and data buffer areas used by the mutation each test case has been specified the original program is
executor. It is characterized by a very interactive nature. executed on the test case and the results displayed so that
The first object the user is requested to supply is the name the user may satisfy himself that the results produced are
of the file on which the FORTRAN subroutine resides. Then indeed correct.
depending on whether PIMS has been run previously on this After the test data has been entered the user is prompted
routine (in which case the internal form is stored on one of for a listing of which mutant operators he wishes to enable.
the many files PIMS constructs, see below) the subroutine At present there are 25 mutant operators. These range from
is parsed into a concise internal format which is subse- very simple low level ones. such as replacing each data
quently interpreted to simulate execution of the program. A occurrence (where a data occurrence is a scalar, constant

or array reference) with all other syntactically correct data
occurrences, to very high level mutations, such as deleting

1-statements or altering the control structure of the program
A more detailed description of the mutations performed can
be found in Reference 3.

Instead of constructing multiple copies of the program.
for each mutant a short (four word) description of the mu-

I tation to be performed is kept. Each time the mutant is to
be run the original program is then mutated according to thc
contents of this descriptor.

After the user has specified to the system his program.
vsn test data and the mutant operators he wishes applied, the

system then enters the MUTATION phase. During this
--rWC Iphase there is no user interaction. Mutation descriptor rec-

ords are read in, one by one, and the mutation is produced
The mutant program is then executed on the test date and
marked either "dead," meaning it produced resul.- .iffering
from the original program on at least one test case, or "lis-

_I ing." A dynamic record is kept of the number and percent-
age of living mutants of each mutation type.

_Aff tWhen all the mutant programs have been tested the post
run phase is entered. In this phase statistics are displayed
indicating the results of the mutation run. In addition the

L J user can interactively view descriptions of those mutation%
Fiure 2 which have survived. He can also specify that certain re-
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REUAN MUTATION POST RUN
PPAAIO PHASE PHASE

Parse the program Execute the mutants. Display results
Read the test data keeping counts on and

live mutants
Create the mutation InenlProduce permanent
descriptor records Fomrecords

Fiirle

port begenrate inordr toproidea dtldpmaet wchmessmcreio.Itisetinewlleot
record~~~~~~~~~~~ ottem.to uo eprmnswihso ha h ISsse sa

S At his ointor a a lter dte, heiuer a ernte ipoeeti hsae vrohrsseswihhv

porbe grenseraliehsse poue in order to onvd eale emnn hche, s nd e futhror onIch tansesecto ea feaiblepowt
retord ifrhmtatimon run tn theex.xpe r s n pahtrught thec ato least nce Is csyse, s an

Atphase Theinta orm aler ate the pased a vern the nmbrofen ino pthis mra ber nonte.here iyteis usuhalveu
progrem.an Then hiest data in stre fo athtest coasete tet contrcted.hc as h op obxctdaes
redanigutante reslts of execution ofethat test adtia he twiceeykonehdofcntrcigtetdt
mutants ioraton be kleepso the muta de sore crd atheemate ecve are thsytmet wih mutantzanalysis ina

pleusarious ter his onwrtpsofrm mutant haveh nmeofwasoe c rectiyby mtan pereutat oterst
bere aesvrlfltsse produced. inodrt nciectl byd themcoupli efet.anThere aeuansl whlcw

in Fgur 4,whih otlies he mjorfunosof ac cauos each satnt poiteont in croant to bae rpacte
phae. hentenalfor fie Sors te prse vesioofthe nuby r f TRAP statmay sbecialinte. ofseet whic ifaltjs

pram MARSO OFs PaMS TOl soTHER DATA evets cshts osruexctdt h caus s teoa to imediaectely abt.las

TEusTN SYSTEMS Ote on nwa ye fmtnshv ubiol y , hen ifthrecl s s mtamnt inertes poghrm

which is never executed. changing that statement to a TRAP
Various systems have been discussed in the literature for statement will not alter the output of the program and hence

increasing confidence in the adequacy of test data, as the will easily be detected.
- PIMS system does, or automatically constructing test data Checking that every decision path is taken is essentially
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DO 10 I=- .J Reploc- II ((I1lIGH-L0W-1).N1,.,) ,011

bv IF ((IHIGH-LOW-I).( i .0) GOTO 7

Replace MID - (L61 H1IGH)

10 CONTINUE bv MID -LOWIHICI)-'

=: a = = . Figure 7
== = == iiur

DO 10 I=1.1

path analysis systems which have been discussed in the
literature.

10 CONTINUE Another class of systems for which extensive claims have
been made are those which detect uninitialized vanahles and
dead code.' Uninitialized variables are caught as a conse-

A LIVE MUTATION IF THE LOOP IS quence of the interpretation process in the mutant system

ALWAYS EXECUTED ONLY ONCE. Dead code is easily caught since an assignment made to a
Figure 5 dead variable can be mutated in any way whatsoe%er and

the program will remain the same.
A third class of systems for which there has recently been

the same as checking that every predicate in the program muchdiscussion involves symbolic execution of the program.
evaluates-at least once to both true and false. If this is not In one study" Howden analyzed 12 programs containing a
the case, say the predicate always evaluated to TRUE, then total of 22 errors. He found that symbolic execution would
we can mutate the predicate in any way we desire as long catch 13 of those errors, while path analysis would discover
as it retains this property of always remaining TRUE. These only nine. In a similar study we estimated that mutation
types of mutations are also usually quite obvious and easily analysis, using only the mutant operators in the present
detectable. PIMS system, would uncover 18 of the 22 errors. Of the

Mutation analysis can also insure that each loop is tray- remaining four, three would probably be discovered if we
ersed at least twice. The only way a loop can be traversed added two new mutant operators which the authors simpl\
only once (and all loops must be traversed at least once to had not thought about. Hence, mutation analysis is in certain
pass the TRAP statement mutations) is if the terminating cases an improvement over symbolic execution.
condition is the same as the starting condition. But in this As an example of the very subtle errors which mutation
case the mutant which replaces the terminating condition by analysis can discover consider the program to perform bi-
the starting condition will survive (see Figure 51. This is nary search shown in Figure 6. If it happens that N = I when
once more easily detected. the subroutine is called (i.e., the vector to be searched

With this. mutant analysis possesses all the capabilities of contains only a single element) then it is not difficult to see
that the program will loop indefinitely. It is not clear that
either symbolic execution or path testing would be sufficient

SUBROUTINE SSERCH(X.Y.N.A. INIGH.LOW.ERR) to discover this error.

INTEGER X(N).Y(N).N.A.IIGH.LO.EP.MID When mutant analysis is applied to this program there are
BINARY SEARCH PROCEDURE. IF X CO.AINS A ON RETURN two mutants generated (shown in Figure 7) which can onl)

SVIO L A * X(ItGH). be eliminated by a test case consisting of one element.
ItAISUT O RAGELON RTUN CHence the error is easily detected using mutant analysis.
A 15 OUT or BRGE oN RETuRN ERR coNTAIS 1 (There is a second error in this program which is also un

ERR - 0 covered by mutant analysis. The discovery of that second
IF ((X(1)-A).GT.O) GOTO 11 error is left to the reader).
IF ((A-X(N).LE.O) GOTO 5

II ERR - I
RUR FUTURE WORK

5 LOW - I

ItIGH - N There are several directions in which work is currently
6 IF ((INIGH-LOW-1).t4E.O) COTO 7 being pursued with respect to mutation analysis and the pilot

mutation system. The most obvious is to show h,- a similar
I ET-U system might be built around another language, and research

7 MID - (o17J.kH H)/2 is under way to construct systems for COBOL and for C.
IF ((A-X(MID)).GT.0) COTO 10 Another area of study is the design of an easy to use
NIGH - MID language for the description of test cases which allows foi
GOTO 6 a variety of features. Test datasets can often be quite

10 LOW - MID lengthy, yet two test cases can be very similar. Also, a user
GOTO 6 often wishes just to construct a number of random test cases
END following some specification. (Some of the pitfalls of using

Figre 6 random data to test programs are discussed in Reference 10

L _ _ __ _ _ _ _
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where it is seen that mutation analysis can help in deriving ware. Large subroutines (over a hundred statements long
"'good" random test data.) Finding an easy yet powerful have been analyzed by our system with relative case.
method of solving this problem is the goal of one area of Mutation is a method of program testing which will sig-
research. nificantly raise the level of reliability in both new and exist-

Finding a method to detect equivalent mutants is another ing software, and is a major advance in the area of software
area currently being pursued. It is often the case that a testing.
mutation will not produce a significantly different piogram
(replacing the sequence 1= I J= I with the sequence I= 1 J=l
is a trivial example). We have observed that programs tested
have between one ind two percent equivalent mutants. A REFERENCES
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ABSTRACT

A mutant of a program P is a program M which is derived from P by making
some well-defined simple change in P. Some initial investigations in the
area of automatically detecting equivalent mutants of a program are
presented. The idea is based on the observation that compiler
optimization can be considered a process of altering a program to an
equivalent but more efficient mutant of the program. Thus, the inverse
of compiler optimization techniques can be seen as, in essence,
equivalent mutatuion detectors.

1.0 INTRODUCTION

A mutant of a program P is defined as a program P' derived from P by

making one of a set of carefully defined syntactic changes in P. Typical

changes include replacing one arithmetic operator by another, one

statement by another, and so forth. Program mutation has been used by

DeMillo, Lipton and Sayward as the basis for an Interactive program

testing system (2]. The theory behind this system is that a set of test-

data T adequately tests a program P if all mutants of P are distinguished

from P by either failing to produce any result or producing a different

result for some element of T. On the other hand, if a mutant performs

identically to P then either T does not fully test the program and

further cases muist he develnped, or the mutant is equivalent to P.-

Obviously It is impossible to develop test data that distinguish between
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eqtitvalent forms of the same program, and thus it is desirable that

equivalent mutants be excluded fromi the testing process. Unfortunately,

user recognition of equivalent mutants has proven to be a difficult and

tedious task. Thus it is important that the system aid the user by

either automatically detecting equivalent mutants or by posing questions

which provide insights on how to do so.

Our goal is to develop heuristics by which equivalent mutants can be

- recognized. The heuristics are primarily derived from techniques used to

optimize compiler code, since the process of optimizing compiler code can

- be thought of as producing a series of mutants which are equivalent to

the original program. it Is thus expected that some of the tests

- developed to determine when an optimization is equivalence preserving can

be applied to determine when a mutation is equivalence preserving.

Once a body of heuristics has been developed to detect equivalence

of mutants it will be possible to develop a program to actually recognize

- them in a program testing system. This system will probably be very

similar to the optimization phase of a compiler. It will generate some

representation of each mutant which can be easily manipulated and apply

the heuristics described below to determine if it is equivalent to the

original. If so then the mutant will be flagged as equivalent and will

be excluded from futurre testing runs.

2.0 PROGRAM MUTATION

tts defined above a mutant of a program is a second program derived

from the first through carefully defined syntactic transformations.

rrogram mutation is the process of forming mutants from an input program.
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The work described here is intended to find ways of determining

equivalence of mutants derived as part of a process for testing FORAAN

programs on the EXPER [4] testing system. The mutations made by EXPER

are chosen so as to duplicate as closely as possible the mistakes which a

good programmer might make in coding a FORTRAN program. Thus many of the

mutants involved, such as DO-loop end replacement, are specific to

FORTRAN. The mutations of interest are described below:

1. Constant Replacement: Replacement of a constant, C, with C+1 or C-I.

t.x: A-1 becomes A=O.

2. Scalar Replacement: Replacement of one scalar by another.
Ex: A-B becomes A-C.

3. Scalar for Constant Replacement: Replacement of a constant with some
scalar variable

Ex: A=2 becomes A=B.

4. Constant for Scalar Replacement: Replacement of some scalar variable

with a constant.
Ex: A-B becomes A-2.

5. Source Constant Replacement: Replacement of one constant in the
program with some other constant found in the program.

Ex: A-3 becomes A=l where the constant I appears in some other

statement.

6. Array Reference for Constant Replacement: Replacement of a constant

with an array reference.

Ex: A-I becomes A=B(1).

7. Array Reference for Scalar Replacement: Replacement of a scalar

reference with an array reference.

Ex: A-B becomes A=C(l).

8. Comparable Array Name Replacement: Replacement of a reference to one

array with a reference to the same element of another array of the

same size and shape.

Ex: A-B(1,3) becomes A-X(I,3).

9. Constant for Array Reference Replacement: Replacement of an array
reference with a constant.

Ex: A-B(I) becomes A-3.

10. Scalar for Array Reference Replacement: Replacement of an array
reference with a refereance to a scalar.
Ex: A-B(1) becomes A-C.
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11. Array Reference for Array Reference Replacement: Replacement of one

array reference by another.

Ex: A-B(1) becomes A-C(2).

12. Unary Operator Insertion: Insertion of one of the unary operators
I (absolute value), - (negation), ++ (increment by 1) or

-- (decrement by 1) in front of any data reference.

Ex: A-B becomes A--B.

13. Arithmetic Operator Replacement: Replacement of one arithmetic
operator (+,-,*,/,**) with another.

Ex: A=B+C becomes A-B-C.

14. Relatio al Operator Replacement: Replacement of one relational

operator (.EQ.,.LE.,.GE.,.LT.,.GT.,.NE.) with another.
Ex: IF(A.EQ.B) GOTO I becomes IF(A.NE.B) GOTO 1.

15. Logical Conn4 tor Replacement: Replacement of one logical connector
(.AND.,.OR.) 4ith the other.

Ex: A.AND.B becomes A.OR.B.

16. Unary Operator Removal: Deletion of any unary operator.
Ex: A-!B becomes A-B.

17. Statement Analysis: Replacement of any statment with a trap
statement whose execution causes immediate failure of the program.

Ex: GOTO 2 becomes CALL TRAP.

18. Statement Deletion: Removal of any statement.

Ex: GOTO 2 is removed, i.e. becomes CONTINUE.

19. Return Statement Replacement: Replacement of any statement by a

RETURN statement.

Ex: A-0 becomes RETURN.

LO. Goto Statement Replacement: Replacement of any GOTO statement with a

GOTO to a different label.
Ex: GOTO 1 becomes GOTO 3.

21. DO Statement End Renlacement: Replacement of the end label in a DO
statement with some other label.I
Ex: DO 2 1-1,10 becomes DO 1 1-1,10.

22. Data Statement Alteration: Changing the values assigned by a DATA

statement.

Ex: DATA A /2/ becomes DATA A /1/.

23. Unary Operator Replacement: Replacement of one unary operator by
another.

Ex: A-1B becomes A-+-+B.

-i
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Obviously some of the mutations described above can produce mutants

which are equivalent to the original program. For instance, replacing

A-O with A-10 does not change a program. It might be hoped that

detection of equivalent mutants would be easy, since the mutations

involved are so simple and well defined. Unfortunately this is not the

case. It is easily shown that the general problem of determining the

equivalence of two primitive recursive functions is undecidable [1). If

we let PI and P2 be FORTRAN routines corresponding to two arbitrary

primitive recursive functions we can show that the equivalence of mutants

is undecidable. Consider the following program to which the mutation

"GOTO Statement Replacement" has been applied:

GOTO 1
1 P1

STOP
2 P2

STOP

The resulting mutant looks like:

GOTO 2
1 P1

STOP
2 P2

STOP

Plainly these programs are equivalent if and only if P1 and P2 are

equivalent. Since the equivalence of Pl and P2 is undecidable, the

equivalence of the mutant and original programs must also be undecidable.

The easiest way to show that two programs are not equivalent is to

find some Input on which they produce different outputs. This is the

basic function of EXPER as a program testing tool, and thus many mutants

do not need to be tested for equivalence. At any given stage those

mutants which produce the same output as the original program on all test

___ ___ _



147

data are called live mutants. Obviously it is only the live mutants to

which sophisticated equivalence tests must be applied at all. Since the

equivalence problem for program utants is undecidable, any equivalence

testing process will not always be able to detect all equivalent mutants.

Thus the final decision about whether a mutant is equivalent to the

original program might have to be left to the user. The goal of the

- testing process should be to make one of three decisions about any

mutant:

1. It is definitely equivalent to the original program.

2. It might be equivalent to the original program, but the information
needed to make this determination is not completely available. The
system should identify the needed information and ask the user to

- supply it.

3. None of the known tests are able to determine whether the mutant and
the original are equivalent. The system is unable to help the user
at all.

3.0 OPTIMIZATION TECHNIQUES

Almost all of the techniques used in optimizing compiler code can be

applied in some way to decide whether a mutant is equivalent to the

original program. Some are useful only in very limited sets of

situations, whereas others can be applied to many types of mutation. All

- the techniques discussed below can be applied widely enough that it would

be worthwhile to implement them in an actual equivalence tester.

The easiest way to implement these techniques is in conjunction with

a flow graph of the program being mutated. A flow graph is a directed

graph in which each node represents a statement or group of statements

through which program control flows linearly (basic blocks). Thus any
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node In the flow graph represents a fragment of code which Is entered

only at the first statement of the block and exited only from the last.

Furthermore there are no loops or branches within the node. The edges of

the flow graph represent branches within the program from one basic block

to another. Efficient algorithms exist for generating flow graphs from

programs, for instance the process outlined by Schaefer ([51, pages

12-20). Thus it Is reasonable to expect such a representation to be

available to the equivalence tester. Furthermore, since mutants are so

similar to the program from which they are derived, it will be easy to

derive the flow graph of the mutant directly from the flow graph of the-

original in most cases. In the discussion below it is assumed that the

equivalence tester can examine programs at the statement and token level;

whether these entities are individual nodes in the flow graph or packed

many per node is irrelevant.

The various optimization techniques which seem applicable to testing

mutant equivalence are listed below.

3.1 Constant Propagation

Constant propagation Involves replacing expressions Involving-

constants with other constants to eliminate run-time evaluation.

Generally the compiler keeps track as far as possible of the value of

each variable throughout the program. At any point where an expression

involves only variables whose values are known the result of the

expression can be computed at compile time and placed in the program as a

new Constant. Thus this optimization applied to the code fragment

A-1
B-2
C-A+R



149

would produce the equivalent code

A-1
B-2
C-3

An elegant scheme for global program analysis is given by Kildall

- [3). This scheme associates with each statement of the program a pool of

data which are being propagated through the program. Such data pools can

be used for constant propagation by letting the elements of the pool be

- ordered pairs whose first element represents a variable and whose second

element represents a value. Other applications of this approach to

program analysis are discussed below. This scheme is ideally suited to

the n~eeds of an equivalence tester.

3.2 InvariantPrpgto

Invariant propagation is similar to constant propagation in that it

involves associating with each statement of the program a set of

invariant relationships between data elements. For instance, invariant

propagation will note such things about a program as "X(O" or "B-1". As

indicated by the last example constant propagation is a special case of

invariant propagation. This technique is of limited use in compilers,

but is very powerful for detecting equivalent mutants.

Invariant propagation can be implemented using Kildall's scheme for

- constant propagation by replacing the variable and value pairs with

triples of the form <object>, <relation>, <object>. Each <object>

represents either a variable or constan~t, and (relation> is one of the

algebraic relations <, >, -, <, >, or 0>. The only difficulty is that an

Invariant propagation algorithm should be able to replace a strong
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relationship with a weaker one (i.e. replace "A-I" with "A>"). The

propagation algorithm should also be able to apply transitivity to deduce

relationships such as "A<O" from the relationships "A<B" and "<0".

3.3 Common Subexpression Elimination

One of the optimizations frequently performed by compilers is to

recognize subexpressions which occur many times but only need to be

evaluated once. For instance, in the code fragment

A-X+Y

B-X+Y+Z

The expression "X+Y" is evaluated two times. The common subexpression

can be eliminated by evaluating it once and assigning the result to a

temporary variable T, yielding:

T-X+Y
A-T
B-T+Z

Kildall (3] demonstrates how his scheme for global analysis can be

applied to common subexpression elimination. In this application the

data pools are sets of expressions which are partitioned into equivalence

classes such that all expressions in equivalence class E have the same

value. Thus the example above might have sets as shown below, where "I"

divides equivalence classes: (Note the addition of a CONTINUE statement

to show the set after the assignment to B.)

A-X+Y { )
B-X+Y+Z {A,X+Y}
CONTINUE {A,X+Y I B,X+Y+Z,A+Z)

Note that the algorithm described by Kildall generates equivalent
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expressions which are not used in the program, such as A+Z in the same

partition as X+Y+Z above. This feature allows the widest possible range

of equivalent expressions to be recognized.

3.4 Recognition of Loop Invariants

A common optimizing technique removes code from inside loops if the

execution of that code does not depend on the iteration of the loop.

Thus a loop of the form

DO 1 I-1, 10
AC(1)-O
AMO

I B-0

would be replaced by

DO 1 I-1, 10
1 A(1)-0

B-0

Since many of EXPER's mutations change the boundaries of loops,

techniques for recognizing when code can be removed from a loop can be

useful in detecting equivalences. Conditions for detecting operations

which can be removed from loops are given by Schaefer ([5], pages

122-134).

3.5 Hoisting and Sinking

Hoisting and sinking are related to removal of code from loops in

that they involve moving code which would be repeated several times tc a

place where it will only be executed once. Thus the code fragment

IF(A.EQ.0) GOTO I
C-0
B-2
COTO 2

I C-1
B-2

2 etc.

, = , , _ . o
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could be replaced by

B-2
IF(A.EQ.0) GOTO I
C=0
COTO 2

1 C-I
2 etc.

Here the assignment B=2 has been hoisted to a position before the

conditionally executed part of the program. Similarly sinking involves

moving code to a position after some set of blocks. Mathematical rules

for detecting the feasibility of hoisting or sinking are given on pages

115-119 of Schaefer (5].

3.6 Dead Code Detection

Dead code detection involves the identification of sections of a

program which will either never be executed or whose execution is

irrelevant. An example of typical dead code is the fragment below, in

which the second assignment to A kills the first:

A-B+C
A-O

Schaefer (5) discusses rules for detecting dead code of this form on

pages 156-161.

Another example of dead code is the case in which one or more basic

blocks of a program are not connected to the rest of the flow graph.

Then, as long as there is only one entrance to the program some section

is never executed and can be removed entirely. This case is not expected

to arise very often in programs written by humans, but mutations may

easily make a large part of a program inaccessible from the entry node.

For example, consider the following mutant of a program:

__________________________________
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A-1
RETURN
B-A+2

etc

Here the insertion of the RETURN statement has made everything between it

and the next label which is referenced in a COTO inaccesible. This type

of dead code is easily detected by examining the flow graph of the

program in question.

4.0 APPLICATIONS

Each of the above optimization techniques can be applied to detect

equivalent mrutants arising from one or more of the mutations applied by

EXPER. Each is discussed below.

4.1 Constant Propagation

Constant propagation Is most useful for detecting cases in which a

mutant is not equivalent to the original program. Any mutant which could

affect the known value of a variable can be detected in this fashion.

The mutants most easily checked using this scheme are those involving

replacement of one data reference with another (Constant Replacement,

Scalar Replacement, Scalar for Constant Replacement, Constant for Scalar

Replacement, Source Constant Replacement, Array Reference for Constant

Replacement, Array Reference for Scalar Replacement, Array Name

Replacement, Constant for Array Reference Replacement, Scalar for Array

Reference Replacement, Array Reference for Array Reference Replacement,

and Data Statement Alteration). Equivalences which may be detected, but

with lower probability, are those involving changes to expressions

(Arithmetic Operator Replacement, Unary Operator Removal, Unary Operator
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Insertion, and Unary Operator Replacement). It Is possible that

equivalences involving actual changes to the program flow could be

detected, but it should be much easier to detect these by comparing the

flow graphs.

The mechanism for testing equivalence of mutants using constant

propagation is as follows: At all points subsequent to the mutation

compare the constant pools of the original program and the mutant. If

they differ it is likely (though not certain) that the mutant is not

equivalent to the original program. The following example demonstrates

this form of detection:

Original Program Mutant Program
Code Constants Code Constants
A-I A-n2
B-A+2 (A,!) B-A+2 (A,2)

etc (A,1),(B,3) etc (A,2),(B,4)

Here a mutation has replaced the assignment of I to A with an assignment

of 2. The change In the program is reflected in the changed constant

pools following the mutation. Unless the assignments to A and B are dead

it is reasonable to assume that the mutation is not equivalent to the

original, and to try to develop test data which substantiate this

assumption.

A firm test of non-equivalence can be made if one of the output

variables appears in the constant pool for a RETURN statement. Then if

the known value of this variable differs between the mutant and original

programs we know that they are not equivalent, since they return

different values on identical inputs. Obviously this test is valid only

if sone path exists from the entry node of the program being tested to

the exit in question. This question can be resolved through dead code
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detection.

4.2 Invariant Propagation

As shown above invariant propagation is really a super-set of

constant propagation, and thus it can be used to test all the sorts of

mutants discussed under constant propagation. However since a great deal

more information is carried by invariant relationships than by equality

to a constant, this technique is far more powerful than constant

propagation. It is particularly useful for testing the equivalence of

mutants involving unary operators (i.e. Unary Operator Removal, Unary

Operator Insertion, and Unary Operator Replacement). In many cases these

operators only affect an expression if it has a certain relationship to

- 0. For example, taking the absolute value of an expression only changes

the program if that expression evaluates to a value less than zero;

negating an expression does not change anything if that expression always

evaluates to 0, and so forth. These facts can be used as shown in the

following example:

Original Program Mutant Program
Code Invariants Code Invariants
IF(A.LT.0) GOTO 1 IF(A.LT.O) GOTO 1
B-A A>O B-f A A>O

In this case the conditional allows us to determine an invariant (ADO),

- which in turn allows us to determine that the mutant program is

equivalent to the original, since taking the absolute value of a positive

quantity is a no-op.

The power of invariant propagation is vastly increased if the

propagation and testing algorithms can take advantage of transitivity and

replacement of one condition by a weaker one. Both of these features are
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demonstrated below:

Original Program

Code Invariants
A-O
CONTINUE A-O

1 B-A A>O,A<5
C=IB A>0,A<5,B-A
A=A+I A>O,A<5,B-A
IF(A.LT.5) A>0,A<5,B-A

GOTO I A5>O,A<5,B-A

Mutant Program
Code Invariants
A=0
CONTINUE A-0

I B-A A>O,A<5
C-B A>o,A<5,B-AC-B
A-A+1 A>OA<5,B-A,C-B
IF(A.LT.5) A>O,A<5,B-A,C-B

GOTO 1 A>O,A<5,B-A,C-B

Note that the algorithm for generating invariant pools recognizes the

loop in this program and is thus able to determine an upper bound on A.

Obviously the invariants shown assume that no other branches to label 1

exist. The relation A-0 is replaced with the weaker A>O when the

statement A-A+1 is detected at the end of the loop. Applying

transitivity to the mutated pair C-1B and C-B allows us to decide that

the mutant is equivalent to the original since B-A and A>O.

There is one important feature of EXPER which is useful in

generating invariant pools: EXPER can perform run-time checks of array

bounds. Thus the following statements generate the invariant pool shown:

Code Invariants
DIMENSION A(5)
A(J)-0 J>1,J<5

Because EXPER checks array bounds any program aborts if J is less than 1

or greater thin 5 in the assignment to A(J). Thus any program or mutant

for which the given invariants did not hold prior to executing the
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assignment would have failed, and thus would obviously not be a correct

program.

4.3 Common Subexpression Elimination

Kildall's equivalence partitionst3l provide an excellent way to

handle mutations in assignment statements. Changing an arithmetic

operator changes the expression placed in the equivalence class of the

variable to which the assignment was made. Similarly, mutations which

change an operand or destination in an assignment will produce changes in

the equivalence classes following the assignment. Thus comparing

equivalence classes can show that the mutant and original differ. As an

example, consider the program and mutant shown below:

Original Program
Code Equivalence Classes
A-B+C

etc. (A,B+C}

Mutant Program
Code Equivalence Classes
A-B-C

etc. {A,B-C}

Comparing the two sets of equivalence classes shows that A has a

different value in the two programs. As with constant propagation, we

can assume that the mutant is not equivalent to the original program, and

that test data should be developed to verify this assumption.

Common subexpression detecticn can also be used to show that a

mutant is equivalent to the original program. If the mutation has

changed part of an11 ixpresHloti F to ', but E and E' are in the same

equivalence class, then the mutant is equivalent to the original program.

The example below demonstrates this situation:
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Original Program
Code Equivalence Classes
A=B+C
D-B+C {A, B+C}
X(A+E)=O {A,B+C,D)

Mutant Program
Code Equivalence Classes
A-.B4-C
D-B+C iA,B+C}
X(D+E)-O {A,B+C,D}

Since A and D are in the same equivalence class we can conclude that the

mutation (replacing A with D in the subscript) did not change the

program. Note that since the equality of A and D is determined through

assignment of a common expression this equivalence would be hard to

detect using a simpler heuristic such as invariant propagation.

4.4 Recognition of Loom Invariants

Many mutations change the size of loops. The most obvious of these

is the DO-loop End Replacement operator, although the GOTO Replacement

operator can also alter loops. In cases where a loop has been changed to

include more or less code than in the original, recognition of loop

invariants can be used to decide whether or not the change is

significant. Examination of the flow graphs should make cases in which

loops have changed fairly easy to detect; thus it is easy to decide when

to apply these tests. The basic application simply involves deciding

whether or not the excess code (that is, the code which does not appear

in both loops) is loop invariant. If it is then the expansion (or

contraction) of the loop has not changed the outputs of the program. As

an example, consider the following code:
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Original Program Mutant Program
DO 1 1-1,10 DO 2 1-1,10
A(I)-O A(I)-O

1 CONTINUE I CONTINUE
2B-O 2 B-O

The mutation above expanded the DO-loop to include the assignment of 0 to

B. Since this assignment is loop-invariant it does not matter whether it

is done 10 times inside the loop or 1 time outside it. Thus the original

and mutant programs are equivalent.

4.5 Hoisting and Sinking

These tests are used in situations similar to those in which testing

of loop-invariants is used, except that they apply to cases in which the

code skipped or included by a branch is changed. Candidates for this

sort of change include GOTO Replacement and Statement Deletion. In these

cases the mutant and original programs are equivalent if the code added

to or removed from a basic block can be hoisted or sunk out of that

block. Consider the following example:

Original Program Mutant Program
IF(A.EQ.0) GOTO I IF(A.EQ.O) GOTO 2
A-A+I A-A+

2 B-0 2 B-O
GOTO 3 GOTO 3

I B-0 I B=O
3 etc 3 etc

In this case B is set to zero regardless of whether we do it at line 2 or

line I. A more compact form I produced by hoisting the assignment to B,

namely

B-0
IF(A.EQ.O) GOTO 3
A-A+l

3 etc

Because this hoisting is possible the mutant is equivalent to the
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original program.

Because the code skipped by the statement "GOTO 3" can be hoisted

the branch is unnecessary. Thus the hoisting test will also show that

the mutant derived by deleting this branch Is equivalent to the original

program.

4.6 Dead Code Detection

As mentioned above this test is very important in guaranteeing the

reliability of tests based on invariant propagation (including constant

propagation). It can also be used to test the equivalence of some

mutants in its own right. The equivalences which are most likely to be

the flow graph in some way. Such mutants include Statement Analysis

(since this mutant replaces any statement with an abnormal exit),

Statement Deletion (if C.OTO or RETURN statements are deleted), Return

Statement Replacement, and COTO Replacement.

The best way to use dead code detection to test mutants of this form

is to examine the flow graphs of the two programs. If any node appears

in the mutant which is not connected to the rest of the graph it is

reasonable to expect that the mutant is not equivalent to the original.-

(The only exception being the case in which the disconnected node

consists only of dead assignments. This situation is discussed in

general below). An example involving Return Statement Replacement is

showii below:
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Original Program Mutant Program
Code Flow Graph Code Flow Graph

A-1 I I A-1I

I I
B-2 I I RETURN

C-3 I I C-3 I

The RETURN statement has broken the original single node Into 2 nodes

with no connection between them. Thus one can conclude that since code

which is executed in the original program (assuming the node is

accessible in the first place) is not executed in the mutant, the two are

- different.

A slightly different application of dead code detection involves

making sure that mutated code is not inaccessible or dead in the first

place. If it is then the mutant must be equivalent to the original

program. This application is identical to the application in compiler

optimization where code is identified as dead and excluded from the final

output. It applies to all mutant operators. An example of this sort of

analysis in testing equivalence is shown below:

Original Program Mutant Program
A-1 A-2
A-B+C A-B4C

Here the first assignment to A is killed by the second assignment, and

thus any change to its right-hand side is insignificant. A more drastic

example shows inaccessible code. Again, the mutant to code which can

- never be executed is unimportant.

Original Program Mutant Program
GOTO 1 GOTO 1
A-2 A-2
I etc 1 etc
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Some cases in which a mutation has killed a block of code can be

detected by using invariant propagation. The program fragment shown

below shows how this can happen:

Original Program
Code Invariants

IF(A.CT.B) COTO 1
FLAGI-.TRUE. A<B

IF(A.LT.B) GOTO 2 AB
FLAG2-.TRUE. AzB

2 etc A<B

Mutant Program
Code Invariants

EF(A.GT.B) CO'TO I
FLAGI-.TRUE. A<B
IF(A.LE.B) GOTO 2 A(B
FLAG2-. TRUE.

2 etc A<B

Here the mutation has replaced the test A<B with the test A<B. However,

the invariant pool tells us that A is always less than or equal to B, and

thus the branch will always be taken, and the assignment to FLAG2 is

dead. Note that without knowing the relationship between A and B it is

impossible to determine that this assignment is dead.

5.0 AN EQUIVALENCE TESTING POST-PROCESSOR FOR EXPER

The above ideas for determining equivalence can be applied in a

post-processor to EXPER in order to reduce the time spent by the user

dealing with equivalent mutants. This processor should be run after the

mutants have been executed on the test data, since experience shows that

as many as 90 per cent of the mutants can be eliminated on the first

testing run. Of the remaining mutants, those which are found by the

post-processor to be equivalent are flagged as such and the user need not

consider them further. Only those which are not found to be equivalent
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are analyzed by the user to improve his test data. At any point the user

can manually over-ride the post-processor by declaring a live mutant to

be equivalent to the original program or by declaring one that was

thought to be equivalent to be live again.

The analysis proceeds much as it would in a compiler, with a few

exceptions which arise due to the fact that we do not necessarliy want to

produce efficiently optimized code* For instance, it is not important

that we worry about compile r-generated constants, since they can never be

mutated.

The first step is to express the original program as a flow graph,

as discussed above. This step may be done as part of EXPER's parsing or

other processing of the program. As each live mutant is tested for

equivalence to the original program a flow graph is generated for it. In

many cases this flow graph will be isomorphic to the original so that

only the contents of one node need to be modified. In more complex

cases, where the shape of the flow graph is changed, the mutant's flow

graph can still be derived from the original. EXPER represents mutants

as a descriptor record describing the change made to the original

program. These records fully describe the mutant, and thus allow the

muitant's flow graph to be derived without re-generating it from a source

program.

Just as it is expected that mutant flow graphs can be efficiently

derived from the original flow graph, it is also expected that the

invariant and common expression pools described above will not have to be

computed for each mutant. Instead, the pools for the original cau be

computed at parse time and the mutant's pools derived from them. As
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suggested above, many mutations cause a relation to chatige, move an

expression from one equivalence tlass to another, or make simi!arly

limited changes in the pools. These changes can be easily detected using

the descriptor record of the mutant, and can be made as local

modifications to the pools. Obviously, care will have to be taken that

any side effects of these local changes are detected, but doing so should

be significantly less expensive than regenerating the entire pool.

The invariant and common expression pools described above can be

combined into a single pool by replacing the individual variables or

constants involved in invariant relationships with the equivalence class

sets used to recognize common expressions. Note that using this scheme

the relationships "equal to" and "not equal to" do not need to be

explicitly represented, since if two objects are in the same set they

must be equal, whereas if they are not in the same set they must be

unequal. If the entire structure of sets and relationships is

represented as a directed graph whose nodes correspond to sets and whose

edges to relationships (obviously the edges must be labelled as to what

relationship) then the problem of applying transitivity becomes one of-

simply following either edges labelled '>' and '>' or edges labelled '<'

and '<' until either the desired relationship is derived or no edges with-

the appropriate labels remain. Note that no cycles can occur which

Involve such paths. Assume such a cycle did exist, for instance a path

using only edges marked '<' or '<' f rom node A to node B and back to node

A. Since a path from A to B exists, transitivity implies that for any X

in A and Y in B, M<Y. However, because a path from B to A exists we also

have the statement Y<X. Because X and Y are in different sets we know

that X is not equal to Y, and thus the derived relationships are
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contradictory.

Representing the pools in this manner allows a great deal of

flexibility in testing equivalences. The following example shows how

this can happen:

Original Program
Code Invariant & Expression Pool

A=B+C
D-E+F {A,B+C)
IF(B4,C.LE.D) GOTO I {A,B+Cl{D,E+F)
X(A+G)-O {A,B+C)>{D,E+F)

etc.

Mutant Program
Code Invariant & Expression Pool

A=B+C
D-E+F {A,B+C)
IF(B+C.LE.D) GOTO I {A,B+C},{D,E+F}
X(D+G)-O {A,B+C}<D,E+Fl

etc.

In this example the conditional branch allows a relationship between B+C

and D to be deduced. Because the relationship is then applied to all

elements equal to either B4C or D we can conclude that replacing A with D

in the subscript yields a mutant subscript which is always greater than

the original subscript. This fact suggests that the mutant is not

equivalent to the original.

Once the modified invariant pool described above is formed it is

used to aid the detection and removal of dead code. Once dead code has

been removed the mutant and original are compared to see if they are

obviously equivalent. If so, the mutant is placed in the equivalent

mutants pool and not procesed further.
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Since dead code is irrelevant to the state of the program, removing

it will not make the invariant pools incorrect. However, it may be

possible that removing dead code enables invariant conditions to be

strengthened. The following example shows how this can happen:

Original Program Mutant Program
A=O A-O
IF(C.GT.D) GOTO 2 IF(C.GT.D) GOTO 2
IF(C.LT.D) GOTO I IF(C.LE.D) GOTO I
A-A+I A-A+1

I etc 1 etc.

The mutation above is a case in which changing a conditional (C.LT.D

became C.LE.D) kills a block of code. The section of code killed is the

increment of A. Because of this increment the strongest statement that

can be made about A at label I is A>O. Because the increment of A is

dead in the mutant this invariant can be tightened to A-O, assuming no

other branches to label I exist.

Those mutants which have not been eliminated by manipulation of the

flow graphs are then tested for equivalence based on loop invariants or

the possibility of hoisting. Any equivalences thus found are placed in

the equivalent mutants pool. Again, it is often possible to apply these

tests to the original program at parse time and deduce their results on a

mutant from the mutant's descriptor record. Only rarely will it be

necessary to actually test the mutant.

The final phase of the post-processor applies the invariant pools

generated in the first phase to actual detection of equivalent mutants.

In this phase many mutants may be automatically eliminated, especially

those involving unary operators. This is also a convenient place to

provide user interaction in the equivalence determining process. The
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processor would be driven by a set of rules describing sufficient

- conditions for equivalence of a mutant to the original. For instance,

there might be a rule concerning absolute values which can be

conceptualized as "Insertion of absolute value preserves equivalence if

its argument is greater than or equal to 0". When the processor is

unable to decide whether a rule is applicable by itself, it turns to the

-user for help. This help Is requested by forming a question from the

rule and posing this question to the user. For example, if an absolute

value operation has been inserted in front of a variable which does not

appear in the invariant pool for that statement the processor could

prompt "Is X always greater than or equal to 0?". If the user replies in

- the affirmative the mutant is flagged as equivalent.

6.0 REMARKS

It has been shown above how many techniques from compiler

optimization can be applied to detect equivalent mutants of a program.

Several areas remain to be explored however.

In the EXPER system only first order mutations are considered

(i.e. mutants coning from one program change), but conceivably some

higher order mutants may be worthy of consideration. In many cases the

heuristics described here can be extended very easily to detect

equivalent mutants of higher order. It is also true that in many cases

equivalence can be tested transitively, i.e. if program P is equivalent

to P' and P' is equivalent to P" then P is equivalent to P"'. However,

it is often true that a high-order mutant can be equivalent to some

-)rogram without having intermediate mutants equivalent to eitI-er. For
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Instance the following program fragments are equivalent:

IF(I.EQ.1) GOTO I

and

IF(--I.EQ.O) 
GOTO I

However, neither is necessarily equivalent to either of the intermediate

mutants

IF(I.EQ.O) GOTO I

or

IF(--I.EO.1) GOTO 1

Fortunately the problem of equivalence of high order mutants is not a

serious problem because of the Coupling Effect: Test data that screens

out all first order mutants will screen out all higher order mutants (2].

Thus only first order mutants need to be considered in evaluating test

data

A more interesting problem involves the detection of equivalences

which are very dependent on the form in which the programmer has chosen

to express his algorithm. As an example consider the fragment below

which tests whether or not a number N is prime.

IF(N.LE.2) GOTO 3
L-N-I
DO 1 I-2,L
IF(N.EQ.(N/I)*I) GOTO 2

1 CONTINUE
3 PRIME-.TRUE.

RETURN
2 PRIMEr.FALSE.

RETURN

It is really only necessary to let the DO loop run from 2 to

INT(SQRT(N)). The test N.LE.2 means that only N greater than or equal to

3 will be used as upper limits for the loop. Since INT(SQRT(3))-I,

INT(SQRT(N))<N-2. Thus the mutation which replaces L with --L in this
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loop is equivalent to the original. Because the equivalence of this

mutant is so closely related to the conceptual nature of the program it

seems very difficult to automatically prove it. This problem might be

solved through the interactive part of the post-processor. Specifically,

it is easy to find out where the mutant occurred, and the processor could

simply ask "Is it acceptable for this loop be executed from 2 to L-1?".

Several techniques for detecting equivalent mutants have been

- described. These techniques should be capable of finding a significant

number of cases in which a mutant is equivalent to the original program,

since experience indicates that most equivalences are very simple ones.

Often they involve the insertion of the absolute value operator, a case

that is particularly easy to detect using invariant propagation. More

complex equivalences can be tested interactively with the user. The

questions thus posed should help the user decide whether or not to

- manually declare a mutant equivalent to the original program.

Several questions concerning equivalence detection remain open. At

several points in the above discussion it is asserted that the date

needed to determine equivalence (e.g. flow graphs, invariant pools, etc.)

can be derived efficiently from the corresponding data for the original

program and the mutant's descriptor record. While these assertions are

- undoubtedly true in many cases, exactly how often remains unknown.

Further experimentation is required in this area, particularly with

regard for the following questions:

1. In what fraction of the cases is it necessary to generate a flow
graph for a mutant from scratch?

- 2. In what fraction of the cases is it necessary to regenerate the
invariant pools for a mutant?

I 2 A- -



170

3. It is unlikely that a change to an invariant pool will affect only
that pool. On the average, how many pools will be affected? How
does the cost of determining all affects compare to the cost of
re-computing the invariant pools?
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o" at least to kill erounh so that the user is reasonably
certain ttat those re-tminino are functionally equivalent to
the ori indl and could never he killed. At this noint the

user t as a set of test data that is sufficiently powerful to
distinnuish beiween thp orininal rronram and all its simple
(noneauivalent) mutants. ,ccordino to the counlii2
: _othesis this test lata will also he sufficiently nowerfjl
to distin-iuish netween the oriainatl Oroaram and any other
:-roorim "close" to it. (vultinle mutations.) This
yoothesis has been rrcved for certain classes of programs
'rj for certain -4finitions of "close", and theoretical work
continue in th'is area. 0 ececnt experiments with higher or-
Aor -utants of F 'FT RA'i routines also sut)port this
y-othesi 5.

T'Us the' user can, with rhe aid of CPMS, prod uce test
a,,ta that will distino ish 0etween the proaram used as input

an, any , ro.1ram "cloSe' to it. Since we assume that the
*r:,qram used as input is close to a correct proararr, the
test Jata will .,e sufficient to distinauish between the in-

,ut rroorar and the correct r. roqrar, if they are not
eiuivule . So th test da+,a L 1 t, e sufficient to



Jemonstrate nroqram rorrectness, to a hiqh deqree of

certainty.

The user of CP S :rovides the name of the file contain-

ini the source prooram. Tnis program should he in the suD-

set of the COBOL lanquane snecified elsewhere. CPMS rarses

this source - roqra r into an internal form suitable f3r
interpretive execution. This internal form is also suitable
for "decorr.nilation", and the user is nrovided with a oecon-

riled version of his rroiram. This "source Listing" may not
.e textually ilenticaL to the orininal source, but it should

be eouiv3lent.

The system then produces an internal file of all
mutations of the orininal rronram. These ire stored, not as

co-vlete nronrams, Dtu rather as uhort descriptions of how a
mutant is to De create 4. Tie user is then asked to rrowiJe
a file or files of test luta for his oronram. These files
rr.Py he created outside CP "S usin a "he editor, or they may oe

created "on the fly" i1 CP S, with editinq carability beina
restricted to backspace and line delete. However the user

choses to provide the input files, CphS interpretively
executes the soirce oroqram on this test data, saving the
output. The iser may examine the outrut and decide whether
or not to accent it. If he does, then the test data is run

against all enabled mutants, and the results of each are

compared to the results nf the source. A mutant rroducing a

different result is marked "killed". The user is tnen
r,resented with a statistical summary. If he wisher, he nay
also examine more detaile6 information about the mutarts
stilt tivini. Then the cycle repeats untit either an errir

is uncovered in the orininaL rroorar, or the user is satis-
fied that all remeinino mutants are eiuivalent to the

original. A CPyS experiment may re interrupted and
continued later, with the system sdvira all information
neressary for the resjrm'-tion of the run.

In response to the experience of tryino to transfer

S rFIS fr one environment to another, we have decided to try

to do a' rh as cossi-le to isolate machine de pendencies.
At the risk of possihle inefficiencies, ,e will concentrate
references to file access techninues, character storaqe,
word lenath, and such m arhine- and operating system-
dependent featjres in a few 5miLt routines. or examDle,
rPis containeed 7? randn access calls in the FC FORTPIN
dii lect. Fack of thps" had to he rewritten as a PRIMOS call
durinq the transfer "rocedure. In rPS, atl random access
will be thrnnlih tfe routines R1ARAN and WRT RA . Those two
(s-all) routines are all that need tc ) e mndified to inter-
faice CP yS with t different o eratinn system. Some machine
d.erendency is toleratel in the interpretive execution ph3se

- ~-~ -~-- ~---
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o' rF'S, since t'-is is the -nost ti re-ron sum inq r'hase of t ne
• utttion rocess. "owever, this depenlency is kept to a
-irimr- even here. T.? buffers used in interpretivety
Pxecut ir.n rroor 4s are i rteier arrays of onp nr two
Aimensions. The size, of the arrays -re parameters. We as-
sume in Aes i(,nin a ttese arrays that a sinr;Le integer
Consists of it leist 1 Iits. (i .e. inte-,ers are restric-
tteJ, 1erever ,ossibto, t,) a ranqe n# +/- W7,7 .)

N'OTF S I% TH'f CO4rI PILOT M UTAT ION. cYST[M

1. wp limit ourselves to a simpLe sutset of the lanauage.

2. -e limit ojrseLves to two nonrewindable seiuential inout
files and two nonrewindable seauential outrut files.
This shouton he sufficient for such common applications
as nakin, sorted transactions anainst a sorted master
filP ind .rodJuCiro a transact ion report and an update!
-adster fi t-.

7. -'ath r thnr rovidin, for a "rre(icate subroutine" as in
it, ill sinply check rutant outrut anain"t original

-ro,; rP, nutuut t,) (1-terTnine whether they have read the
same number of in, ut records an- r roduced identical out-
-ut files. It is h'elievei that just checking record
counts o ir")it -d cutput wilt eliminate many mutants
withoat more detail comparisons.

4. Vutations to te rerformei:

1 rFCIVAL ALTFr'ATIO - M ove implied decimal in
numeric items one rlace to the Left or riaht, if
p oss5ii It.

? RFVVE S F TA -LF VF L rT RL f I rFNS IONS

5 .OCCUPS CL 6USP ALTFkATION, - Add or subtract one
fro an r(CrU S clause.

4 I F'EPT FILLEP - of lenoth one netween two itens
in a record.

5 FII Lt, S1IF ATFRAM ON4 - Add or subtract one
from lenatrt.
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6 FLEMFNTARY ITFY RFVFRSAL

-7 FILE PFFFRFNrF ALTFRATION

STATF AF NT ').LUTTOPJ - Reotace by nutll oreratio.

C? GO TO -- > PERFORM

10 PERFOPM-- 'V To

11 THFN - FLSI PEVERSAL - Neciate condition.

-1? STOP STATFENENT SURSTITUTTON

13 THFkU CLAI'Sr EXTENSION

-14 TRAP STATFTm FNT RrPLACFYMENT

j-, SIPSTITUTF ARITHmETIC V[Rk

16 SUlV ST I TOiTE OF' FRA i OR TIN COY PUTE

17 F-A RFNT4F S I' A LTF RATIONt - M o ve one parenthesis
one pkice to the left or right

1 * R ( IP FD ALT[RATION - Change kOUNDFD t o
truncation, and vice versa.

1 3 ArVF PEVEk ' AI - rev~erse d irect ion of move in
S iTr e 'OVE A9 TO ti, i f the result would he legal
i n C 0 " L.

2. I ~C A L 0 nFR a T' PLACM& 4 T

1 'lCALAq F0 S'jAA FFrLACF-FNT - Suhstitute one
( n n- t ih t e) i t P r rff-e rnc e f or another, where
t me re sul(t WCULi J e teciaL.

r-,STAN4T Fr:R CONS TANT PFPLACFvENT

C')\CTA .T FfR 'SCALAP RFPLACFmFNT

?4 SCALA-? Fok CON~STANT REPLACFP FNT

25 NijF QT C Ci,:S TA.T APJUST MF\T
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lI NT!FICrTIOl. DIVISIO;'.

A',,: RA - , r o r, n- n r e

[AUTTHOR. corm-nt-entry.]

L I S T A LLA T T 0 . cmrient-e t ry. J

r, TF - R TT ('.. c o rm .nt-entrv.

A T F-:r PILi,. I(L'm-nt-entry. ]

['i CUE TY. co r"ent-entry.]

[ [ RK" S . c o r - en t- en t r)

f V I I_ ( o r 1 I I V I S T ON.

cr. aF l 8T1ON s[cT IO,.

I -- U -uTr . co--ent-entry.?

_U T . cor cen -entry.

:' C I L- I r rc 1 I - ne o nic-na me

-

F TI t -C INT OL.

fi Le-'w -e I TO (I:PUTt 1 INPUT2 OUTPUT1
r'JTf liT 21..o. 1

£'TA IVIISJo.

F 1LF F ( T 10'4 .

f__ i e -,, m ri _eIf (t _ CO0 NT I % intpo er CHAqACTF ')

LAHrI rr, l {T Adfl a f - re
D A TA C J0 dt-ri

tevet-nunbpr {'ati -nanme I FILLF_
'F FF 4F ES 'ata-nanc-?l

{ I 1T! r I PT ) TS character-strinn]

rOrFUPS i nteger Ti rs
tV-L'F IS titer,]



r77 Level. ertries.1

- rrecori entries .1 ...]I

A r)r D{I e nt - I L ir-I) [i dent-? I Lit- ?). .. (Tn

EROUNFEDI FON Sj7ZL EP-RQ" imoprative-statement)

romPUTj i~entifier fROUtNDI'D = rithmetic-expression
FO SIF RRP r'erativel

Pivirnr (irlent -1 Ilit-i) (TNTO I t) (ident-? I tit-?)
C[NIN5~ ident-1J [NOuJrNUW)a T6% 1,Z FPPOF irrer~tivel

jQ~ TO nrocefitre-a.me-i I (Drocedure-nanme-23.J
2~L~2L~ON identifier]

IF condition (rratempnt-l rTSTP.TF-FNT)
L F (st~te'rent-2 I FXT STATE!LtT)I

M")VF jlert-i TO i'lent-? lidert-3]

%2ILI1 Lj {ilent-1 I tit-i) ;JY (ilpnt--C Iit-2)
- VVI(. i lent-!, 3~ i~ 1 :0 [[L (EN S I If RPOP imr'erativel

( Ot% T E.Ir i t len ime-1 r i i L ena-me-C2JI1

rnUT-(Tr fi Lend"'e-' [f i terare-41 I

" w R" c roce lure -n 1,e-1 [Ti--~ 'roceriure-nsatre-21

21 fiter~ame krr.Wr, [121Q identifier]
A T r'jr' irm;ortive

,dent-rn I. it-n) i-)[~kn- t2 O

C~VI~~ pent-ni r'row~n~ro ---- SIr PRO'9 i"nerativeJ

~L~record-name CF;ON. identifier-li
rAFTEE ArVNCIfI (ident-? Iintener I -nnemonic) LTNIES]
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TWV cP"S CUN

The four nhases o f  the CPM'S run are the F TkY phase,

the FRE-RIN rhase, the AUITATION nhase, and th POST-RUN
Fhase. The FrTRY rphase is executed only when the user first
enters the system. Thereafter the PRF-RUN, MUtTATInN, and
f,,3T-RUO -ha... are ex'cte- cyclically.

I. The entry f hase.

1he session wit L leqin when the user enters the system by
Lton;inn in and ty.ini seq E_)Ln'isl] (In either upper or tower .N '

case.) If l is welt, the systerr witi responi:
WELCOME TO THE COBOL PILOT MUTATION SYSTEM
f llowed by:
PLEASE ENTER THE NAME OF THE COBOL PROGRAM FILE:
Th- user shout-, 'r just that. CP'S creates several working
files of its own, whose nines are variations of the source

file name formed hy aroini suffixes to it. The system
checks to see if those wnrkino files already exist. If they

'ILI, th. user can either cintinue the Irevious run on that
soirce file whpre he left off, or he can start over from
scratch. Therefore, if the workino files atreiadly exist, the
systeT dsks:
DO YOU WANT TO PURGE WORKING FILES FOR A FRESH RUN ?
ifA new run is ,neeled the system beqirs with the ressage
PARSING PROGRAM
A yntix Prror in the soiurce nrogram automatically aborts

, rP'S riv,. T e use must correct the error aril re-enter
t1-- system. Irrors are reported to the user as a source
,rn ra- line numh, er in,' the prohat le cause.

Tt,' systeT the issues the messaaes

SAVING INTFRNAL FORM
CREATING MUTANT DESCRIPTOR RECORDS

IT. Tie tre-ran ,)nas..

Ir this ihase, the user supplies test data and turns on

"utants. The system asks
DO YOU WANT TO SUBMIT A TEST CASE ?
,nd N.e user s0oul resboni yrs or NC. The syste- wilt ask
WHERE IS INPUTI ?
(if tnre is i SFL l CT statement for T PULTI)
tc. ich the user shoulrl respond HFRF or (filename>
: it s rFPr, the u-!r enters t e input data lirectty, enl-
in: wi 1h the crnntrot-C for endi of ti Lie.
Ttle system then ioes tnrough the same Droctdure for INPUT2,
if it ha3 been named in a S[LrT statement.

At this point the system silt execute the rrocram

interoretivetv on the test in ut. After finishinn, the out-
ItJt on files UTPUIT1 -d OIITFUT? wilL be disnlayed The

user is asked:

4
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IS THIS TEST CASE ACCEPTABLE ?
To which the user shoutd respond YES rr KO.
If YrS, the test case (innut -jnd outrput, alonn with the time
used, and counts r~f records read) are cata Loqueo for later
use with mutant nroarars. 'it NO, the test case is purael
from memory.

This process of enterinq test cases iterates until all inn Jt
c,ses for this pass have been entered.
At this time the syste- wilt ask
WHAT NEW MUTANT TYPES ARF TO BE CONSIDERED ?
Th user should respond ALL or NONr or SELFCT or shoutd give
the numbers of the mutant tynes to be used rext. SFLECT
causes the system to list each type that has not yes been
considered, and then ask for tyres.

The list of numbers should he terminated with the command
STOP.

III. The %utation Phase

At this time the test cases will te run ana inst the mutant
croqrarr. The tifre that this takes depends on the number cf
test cdses oresented, the tenath and "oensity" of the
nrooram, and the types of mutants currently beinc.
considered.
After P1[ the test cases havp teen executero for each mutant
still alive, the syste:n will lisrlay the statistics of the
run, indicatinn the nurrner of mutants created 3nn the numn!er
still alive of each ty-;e that has Leen considered, as well
is summary counts of n-;w the lea-I rrutants died.

IV. The rost-Pun Phas-

1cw the iser has a chance to view the mutants still repair-
in (either all of then, or selected tyres, or one randomly
splectpd 'nutint of eacr tyre), or te can send information
atout the run to an outnut file for later -)rintina. To end
tke post-run nrasp th- user tyres either _f.LT, endinq the
spe sinri, ut sivini the tempnrary files for future resumD-
tinn, or I h)fP sendino the system hack in a loon to the cre-
rut, v, isp to enter mnr.- tpst At. anl/or consider new muta-It

The user -pay tirminute thr sessior at any time the a comiianl
is re q este ,J ,y tyr in: KILL.
The ij pr cmri receive ra exflanation of his ootions. at many
(,r'nt,; in the ryclr tv tvpirio Hf II
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0OT H lR WORK TN 14 R10G KE S S

i,:utation Anatysis ,lenends on our abitity to restrict our
.ttention to singye mutations, to avoid a combinatorial ex-
tLosion in the numner of mutations performed. This is

iustifie. ny the un' ijL!inf hyp 1bth ij that says that any test
lata that is strona enouah to distinguish between a orogram
and alL its none3uivaLent sinole rtutants is also strong
anjrh to Histinauish the orininal oroqram from more comolex
mutants. A version of CP'v has been preoared to test this

hynothesis hy renlomlv samnrlinq higher order mutants,
executino tnh, on test lata t~at has heen found sufficient
tor first frdr mufants, anl reortinoi any hioher order
mutants that are not eliminatpd, along with statistics on
how atl of the other -,utants were -Liminated. It is honed
t .t this will nrnvirle u- with an estimate of the LikeLihood
that a more compilate i error woutrl escane detection in toe
-utition rrocess.
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CHAPTER I

INTRODUCTION

A familiarity with the PNI"OS operatinu system and

the file management system, as al, lied to the PoDlE-40p(

comuter, and a familiarity with the Software Tools

Subsystem [17] is Pssured. Detailed discussion nf the

respective command syntax wi II P avoi:4ed excent where

required for clarity or completeness.

This parer is a discussior of the oorationaL

processes and the imrlementation of e r ilrt system for

performinq proqram mutations. Since this is an orerational

= discussion I will not atterr t a detailed theorptical study.

Such studies are available in U14,15].

I will also describe the oreration of P rilot

mutation system for rerforminc mutatiors on FC.PTFAt

subroutines as a means for testint -roorar correctness. The

syster wilt accert an input file which is assumec to contair

a FORTRAN subroutine valid in the lancuace subset (see

Appendix P). futations are qenprated accordinc to orerator

commands and each mutant is checked for correctness.

The system is divided into three operational f hases:

a pre-run phase, a mutation ohase, and i post-run phse. In

the rresent imp.lerrentation, the entire systeff is resident in

approximately 67Y words of virtual memory. The phases are

independent enouqh procedurally that they ffay te overtayed
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for use on a sma ((er merrory conf iouration.

In the nre-run rhase files are orene( or crpter and

instructions are acceuted fnr the .roce-sinr ir r ther

phases. If an "internal-forr" file oces nnt exist, rn is

called an initial rin . Throut)hout aLt r ses of syste-

operation, activities are diffPrent for iritiP. a nc

subsequent runs.

In the mutation phase, rutarts are created and

tested. It is the mutation -h,:se thpt is the central nart -

of the system. ,uring tho post-run p asf, statistics are

displayed about the mutations tested thus far i- the

rrocessino. In adcition, files are closed for use in

suhsenuent runs. One featur- of the s~sten design is the

ability to execute the three h ses in senuerce an'- then

loop back tc. the :ire-run ptase fvr dGCItir a t r ro r .siFr.

Ir, this manner, a user can ot erate the sy- terT anci nair

insiqht which is ther. used in taitorinq the responses ir the

next pass. This repetitive refine-ent Of the test nata

contributes qreatly tc the rar-id converoence on a set of

acceptatle test data[l4].

L " A
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CHAPTER II

THEORETICAL OVERVIEW

An increasinq i roductivity ht rricn er softvare

developers has contrihutec to the increased use of several

aids for the desion, i rr(erentation ar r deruo ginn of

large-scale software rroducts. Howpver, tth se aids are

intended for the actual roarawmers and firrt-tevel

management. They rrovide QcUaIitative riescrir tions rather

than auantitative informption tFat nay he tised throtcnhout a

managemert hierarchy. The tyr.ical rana tr iitL as

cuestions like, " ow close is the rroject tc somethinn that

the users wilL find acceptat le as a first release?" and,

"H ow well has the r'rcqrarl been tested '" he tpciriouec of

moduLarization[1 4 ], structureG r,ronrarrincfl4], anA irroira-

verification[9,1CI do not seem to answer these ,nd sin iLar

ouestions. This tack of answers arrears understandabie

t ecause managervent should not te exnectecd t( un derstand

proqramming tannuanes and/or sohisticatec; mathematics. ]r

this chapter, we will expl in how a nek testinq arrrcach

known as progran mutation[IS] can he used tc nanago scvtware

effective Ly.

A statement of the Drogram testinn problem, as seen

by ulanaaement, micht he: Given a iroorar rodul ard its

associated test data, hob. wetl does the data test the

module--in quantitative terms? To solve this protem,
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rroarar mutation provides a auantitative mepsure W the

"ooodness' of the test rata. ;e make the assurartion that

the better the test data (i.e., the rore conrTete) the rore

thoruugh - proararn has teen tested. Ard in a scnewhat

simolirtic fashion, the , ore t. Oorouoh the testifno, the ,ore

corficerce can he rlacel in a rroarar-Is correctness.

A rilct syste r which performs rroora rutat i nr15

produces a "score" hich irdicates the adenuacy of the test

data. The users attempt to imnrove upon this "score" Ly

either auerentinq the test data or by ans~erina "cuestions"

atout the rrooram beinc tested. These ouestions address the

essence of the rrooram by forcing the user to comoare

alternate fcrms of a oiven staterrent ard to hake a recision

wtPther the many forns are enuivalF-nt. This rrocess of

suprpLyiro test dati, ans ,erino ruest ions atir interr ret inn

results continues interactively until the user is satisfie,

with the quality of the test data. reanr hiLe, alt of the

data rer-ains available at each iteratior. for mar ace e-t

review so that a guantitative answer to "how wpLl a t,rorram

has been tested" can be ebtainel.

t_._lg io~n Melt2o9__o29Y

Prooram testing cannol he deductive. We lc,b , s

since rroaram testina attempts to derive firit Ies ,

which implies oceneral correctness. p t r' 1 a C4 "



r AD-AL07 774 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A-ETC F/6 9/2

PAPERS ON PROGRAM TESTINGI(U)
1979 R A DENILLO, R J LIPTON, F B SAYWARD N0001-79-C-0231

UNCLASSIFIED GIT-ICS-79/04 Ng-IIIIIII.
IIIIIIIIIIIIIIfllf

IIIIIIIIIIIIIIf....
llllIhlllllllI
IIIIII-----



187

is known as "adeouate test data." And, since adequate test

-data cannot in general be derived ataoritl,.icaelty[4. ,

oronrar testino is not deductive. For this inductive

process, we are therefore tryin to answer a fundarentat

ouestior, "If a proorar is correct on sorre finite number of

test cases, is it correct in general?" Several n ethoc have

eneroed which alloy one to oain confidence in test aata

adequacy. These methods include path analysis[l,?,5, ] and

an arsociated technique, symbolic execution[7,P]. The basic

idea of ,ath analysis is tc exercise all control raths

-- within a program. Symbolic execution attemr-ts tt, derive t e

test data necessary to do this. Test data known to exercise

each flowchart path at least once is tetter thar test data

that does not. It should he arParent that the possiHility

of faulty analysis is very real[3J.

Let us aoproach the probler of testing from a

different viewpnint and assume that experienced rruorammers

write crogrars which are either correct or are "almost"

correct. Stated more formally:

If a ;.rogram is not cnrrect, then it is

a "mutant"--that is, it differs fror a
correct proaram by simple, well
understood errors 11].

Errors have been found to he caused b~y one of three broad

- cateanries[12]. First, the specificatinns may be

i sunderstooo. Second, the specifications may be

imrrlemented incorrectly these are the so-called "locicat



188

errors." T h ir d t he errors r ay t.e of a purety cle-rical

- nature. The croqram mutitici frethodotoay car, lead tc the

dletection of aLL three error types[16].



189

CHAPTER XII

-PIMS USER'S GUIDE

- This document, in conjunction with the apoendices,

describes how to use a terminal to orerate FIMS on the

- PRIME-400 computer. All ccrrur, icatiors tc FIlvS must be in

capital letters. Lower case letters are treated as errors

by PIMS.

PIMS consists of three seiuentiatly executed rhases

which are called the "Pre-Run Phase," the "!utation Phase,"

and the "Post-Run Phase." Throughout these rhases errors

may occur; and the types of errors detectec4 by PINVS, the

error messaaes, ane PI 'S' reaction to errors are described

in "PIfS Error Messaaes" (see Anpendix I). In this chapter

it is assured that no errors take nlace.

In the Pre-ku Phase the user tells F1S what rrooraff

is to undergo mutation analysis, cescrites those asrects of

the progran and the test datd needed by P]M1 to execute

=mutations, describes the types of mutations he warts done,

and partially describes the contents o4 his output file.

The user may also reouest thet certain status information be

displayed on the terminal. Durina the Vre-Run Phase the

user may terminate his rur-, leavino his transient files

unchanged, by issuinq a TILL rest'onse as a repty to any PIKS

prompt for irput.

In the Mutation Fhase PIMS creates and executes
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mutants. There is no usmr irteractinn #urino this i tase.

In the Post-Run Ph;-Se the r jser co". tetrs t.iS

description of his Output fi P . we tray alsn recuest t tat

certain status infor-aticty be disrtayed on the terrirat.

In the exnlanation- and examrtles t at fotto , "Srdce"

characters are significant and shoutld e used exactly as

shown. In addition, any rpsponse to a terminal ouestion

should te terminated by a "carriaoe-return" or "newtine"

character as approrriate for the user's srecific terninaL.

To begin the executinn of PIvS the user tyres the lotto.ine

command:

OK, SFG RU11>PIMS (see note below)

PIMS responds, as soon as it has been loated, Ly disrlavino

the foltowina message

PRE-RUN PHASE

ALL INPUT MUST RE IN LPPEP CASE

NOTE:
Non-casual users of PIMS should constitt with the PIS

staff for details about loain Rnd file intecrity.

-- --- -- -- - -- --
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w~

The Pre-Run Phase consists of six senuentially

executed parts, sovre ortional denenrdin cn hiether cr not

PImS is beinq run for the first tifte on the given rrooram.

PImS requests the nafe of the Faw Proarap ri le ty aisr, Layina

the following message:

ENTER THF RAW PRO4rAA FILE NAVE.

Raw Proqram rites are createi usir, a text editor rrior to

entering PIKS. A short tutorial on using this eoitor is

available as a Lonin option (see also rrendix F). ihe user

types, on the next Line, exactly six c',racters which tell

- PIMS the file in which the raw program resides. Tiis also

sets the file nomenclature convention.

k __ -
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The raw prooram file narr' is exactly six characters.

we represent this six character name ty the sypnbol <nafre>.

Then the PI.'S system files are created and nay be accessed

with the following suffixes.

<naee>.I ..... Internal Form File

<narp>.T ..... Test "ata File
<name>.C.....Correctress Descriptor File
<name>. 1..... .Putant Infornation File
<name>.( ..... Report Output File
<narr>. ..... .New Test Data File
<name>. ..... .New mutant Inforptior File
<name>.P ..... Predicate-suhroutine internal file

NOTE: The user is referred to Arrendix F for the
details of creatino, editinc, and ffaintainina the
rao prnaran files 4hich will he -rocessed by FPIMS.

PIVS rieterti nes the run tyre, either an initial run

on the r:roq ran or a subsecuent run, L y sear chir n for a fi Le

witK the six character name entered anr a suffiy of ".I" If

this file is found, the run is considered to te a subsenuent

run; if it is not found, the run is considered initial.

Once the systen determines trat a run is suhsenuent, the

user is qiven the opportunity to discard ;;L rrevirtjs files

and start over.

lurinq an initial r'rn, PIwS accerts instructions

about the routine being tested and ary ,sscciated test

cases. These instructions consist of tre sub-parts as

Houscribed be low.



193

PIP, requests that the user categorize each forrtat rarar..pter

(for illustrative purposes tet the variaLte he nared x) hy

successively displaying, until all raraneters are

categorized, the following ressane:

CpTIGORIZE FOQwAL PARAMFTFk Y

The user then tynes the kpyword corresr-onoino to one of the

categories INPUT, OUIPUT, or I NPLIT/OUTPUT, r,r tyres HFL if

he has forgotten detaits ann wprts P]1S to display the

command keywords.

(9) Mutant rr_ 991-na 0 _igr

To determine whether mutant correctness i% ceterrined Lv the

"predicate subroutine" method or the "sarre as the rronran"

rethod, PI1S displays the fotol irn sessape:

IS "UI A":T COkRFCINrSS hFPFt1DFNT ON) A P FrI CATF

SUJPROUT INE?

TYrE YES OR NO

The user types in the appropriate reply. I YES is erntred,

PIPS displays the predicate subroutinf statement it has

found in the Predicate Sukiroutine File. The user creates

this file prior to any initial runs with the aprrorriate
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file name as described ijnder file nane ccnvertioris.

PREDICATE .U RIUTIN'E S ,IATEFe
{the predicate juthroutine nane anr. formal
pararneters)

(3) _Rati2n of he Test Pla Fite

At this roint riwS ir  read% to receive the test -I.t fro-

the user and siorifies , is by disr tayir'I ttle t . (r.. ir.

mnes sage:

HOW NANY TFST CASF tKd TC P[ SPFCIF1HD?

The user enters an :r'r(.,ridte count. For Pach test case,

PJIYS prompts the user to er.trr values for tte inCut forral

[arameters of the program. First PI-S renuests the v;lues

of the scalar Frarameters, then the cne !imensiona1 array

formal rarameters, anc finally the tw(, (dirensionaL arrlys,

all in a manner to be described below. &;enuests for a

specific test case are si'natlled hy F'IS disrlayinc' the

fol Lowinc messaae:

SPFCIFY TEST CASF i:

The values of the scalars are revet sted tv P]f'S, five :t a

time, until all scalars are satisfied, ly iteratin(g, the

message

FNTEI VALIJFS FOR VI V? V3 V. V5



195

The user then inruts the r.un:ner.s. ,Shoulo the user have a

laroe volurre of test data, he ray enter thp keyhord FILE at

this point. The systerr. rill ask for - file name and read

the test case data fron that file. Sinote dimensioned

arrays are irput one at a ti-e by PElMS rcouestina values for

scecific array elerrents until all values have Leen entered.

For examrte, let the array be named P arc its dimension he

7. (NCTF: P15:S aets this dimension from the rroLrar's

P IF NSIOP, statement--it mist te either a Constant or an

innut for.al parameter scatar variale.) The sessinr wou[e.

be as follows: PIMF disrlays

- EflTFR VALIIFS FOR t(l) A(?) A(3) A(4) A(5)

The user would enter five nun bers. Pll.'S then dispr ays

ENTEF VALUES FOR A(6) A(7)

The user wnutd enter the final tb rurrters. PU the

rereats this rrocess for anther one riinensional array or

ooes on to reauest values for the two cimensionat arrays.

In the case whire a user hants te inCi:t array

partially defined, he enters LIN'D rather thanr a numrer for

the undefined array elements. Only numeric data of the

tyre, I N TEGFk, may be processed. FI"S reo Lests the values

- for two dimensioned array elerrer-ts in a manner similar tC

that for single dimensioned arrays. The values are

renuested in rou-major order, five at a tire. For exairle,
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if A is of dimension (2,7) P T'S witl ntI e t e fcItowirr r our

promrt s

FNTE VALUES FO (1,1) A(1,2) 1(,1) 1 2 1

AC1,5)

FrTFR VALLES F0P A(1, ) A(1,7)

FNTER VALUFS FO A (?,I) AC?,?) PP ,3) t(?,L)

U.?,5)

FNTFP VAL'rS FOR A 2 ( , 7)

(4) Additional Test Cases

When additional test cases can be aoec to the test case

file of the qiven rrograr, FT NS dis-lays the fot lowino

message:

hOA ANY .,Ew TFST (A SP FOP T-IS P N:?

The user then enters the a'-rropriate count. PT"S ther

nromr.ts the user to srecify the new test c ases ir the same

manner as described a b vP ir the "Creatior cf t.he Test (lata

rile" -u.'section. The result is to extent4  the Te-t Data

pil T. Test cases c annot he ue teted,

(5) Adition of and Stal} 2f !Ytt _YC§2e Co0lidered

To see if new tynes of mutants are to be considered for this

run, r 1' disltays the fotl ooino Te.ssace:
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WHAT "EW TYPES Of "'UT NTS /.Rr TO PF CONS]1[RFD:

At this point the user has -everat o~tiOnE. he ,ay tyre in

any of the foLtowing rerlies

NONE - Part (5) terminates.

HELP ----- PI NS dis. Lays alL the code r, ames (,f t e

mutant types as described in et endix C. tart ( )

is then re-execute
4 ,y PP S.

AL L Every ty:)e rf utatior .ilL he

considerei. Fart (c) termi nateS.

Ti T2 . Tn ----- TI . .. Tn are codp names of

mutant tyres (see ADrendix C). Putarts vf the

listed tytes wilt he considere for this a'n

suhseauent PIPS runs. Part (5) iF ther

re-executed ey Pr ue.

SENSF TI T2 ... Tr, P T S ris:-tays khirh cl

the Listed mutant types are currently einc

considered and which are r't. Fart (5) is then

re-executed by PIyr

SFNSE ----- P-- S disrcays which of the ossibte

mutant tyes are currently heino considered and

which are not. Part (5) is then re-executed t-y

PI ~S.
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S;:IFCT Ti T? Tn Ite srr srecifir tr

PI'AS which of the mutaints hp ishes to kno c-,ut.

(6) Dis£ay a Output of Past Pesutts

In order to inform the user, in ron-in t iaL rur s, th-! .drt

(6) h a r be r . ri, P IMS I i sr t a y s t n e f n I i irg r t sa c e

k'FVIFI ' RIVIOUS FU' r Ir I L T

At this point the user r C three r trt : tI) Le r'a

reouest that certain infor matic- c rcerr ir, r t he rutan

status before this run I-e disr aveo, (2) he r y reuest that

s i rm i L a r informat i on he i rl c L u e h s i ru pt t i L e , or (

he may request that he mutation rha.re o r N* e s t rte .

y t i on t hre e i s reouested uy t> } in r T T F . he ot her t o

options cause this dis' Lay to t'e re-executt:, ,cc c ,sen

by a repeated displayino of the "'EVIF .... " ss.1 . Ihe

inforration which car he r4i Layed or inclio p d ifl the (,utrtt

fire is the fo[ towinn:

(a) Disr (ayino Informat ion

All requests to lispLay infrrmatior on the screen

teoin with the word n7SPLAY. Text there is P srace

followed by a keyword which describes the inforration

tr; be pult on the screen. Thr keyWor rS are t e

fotlo win a: 
I
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HEA P FP --- The 'rocrar, sutrcuine slatererit and

the cLa'rsification of the rroqrar''s formal

raran'eters are disrtaye1.

CORFE CTN~E SS --- The ret hod (- dat ere i ni nc rut ant

correctness an-4, rossihly, the sut-routine

statement of tle nredicatp sutroutine are

dlisr tayed.

- TIT LE --- The P1'-S run title is cisr~ayed.

STATUS -- The rrutants' status tefore this run

is eisrLayed

Ot ut rut t ino' Inforrr; t ior

ltreauests to have informration inctuned in the

u s er'Is outrUt fi te h-q i r vith the -,cr-! (TPLIT nex t

there is a space fvt lcwel by ;- keyhorrl descririno the

type cf information to Le i~cLudIed in the OiJtrUt

file. The keyword is ther folowino:

TF STCA SFS -- Thr r,rpv irus test case s are

included.

TFSTCASF n - The snecified case, "no, is

dliso Iayed.

There is no user interaction dlurinc: the mutation vhaise. Ir
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the event of a fatal rrocessina error the host oerdtinc

systen wiL issue approrriate rid lnstic fress cp .

The Pojt__-run? _Pbh~a

The Post-Pun Phase consists Cf cne nrrt which is

similar to part (6) (Disctay and Outl ut (f ast -esutt.) 'f

the Fre-Pun Phase. It car t,e called ", isl tay ard % ktIuf ol

New Pesults." In oroer to infor- the user that the fost-run

Phase has beaur, PJ1F disr, Lays the fc tc irn ressaae:

F'OST-FU' F'-AS -

At this roint the user has ttrae ortions: he ray renuest

that certai n inforratirr cc-ncerninn tt.e flUtart resutts fer

this run and the mutant status after this run te disrt yed,

he ay reauest thPt similPr infornati cn as welt as irutant

r, roqram listiras he included in his Outrut ile, or be -,v

recuest that the PIJ S run terminate. The first two ortions

witl be described below. The third oLtior is recuested ny

typinp STOP ar in each cf the forner two ortions the

Post-Pun Phase re-cycles by Pl'S disrLayinr the fntlo ir

message:

POST PUN RESULTS

The information which can be dist.layed c.r inc tucle in the

output fiLe is the folLowina:
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(1) DisrLay of Information

A I requests to display i nlcrrt ior on the screen t oi r

v'it the word DISPLPY. Next there is i, sopce foltowea

hy a key%ord describino the irf,rmlatior, to he vut on

t he screen. The keyworts are the fot totiro:

Ci) HEAtDFR - 'Sarre as in the F-re-Fun r-hase.

(ii) COPPECTNESS - Sa-e as in the Fr -Pun Phpse.

(iii) TITLF -The Fl ' rur, titLe is disrLayed.

(iv) RESULTS -The mtutant results for this run are

ci sr Layed.

CV) STATUS5 The rut~nts' stAtus ;rfter this run. is

c~i srtIayic:.

(2) Outrut of Irformation

ALL reouests to have information incLocerl ir the uspr's

outp~ut fite beoim with the ,ora (liTPLIT. Nhext there is

- a srace foLLo~ed by , keyuhord descrit-irc the tyrce of

irformation to he included in t he ottCut f i Le. T he

keywords are the fotLowina:

Ci) TESTC.ASFS -The new test cases are inc Luded.

L 'T A NT T his ke y vo rd "U s t ber fo L(r .ed by

ddlditionat keywords PS follOWS: (The absence of

keywords imolies the ALL keyworr'.)
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(a) ALL - A Listino of i%(. the Live mutant- i,

included.

(L) RANDO' - A tistirc. of ore ran comly stlected

live mutant of each possitle ,Lut art ty. e havinc

Live -utants is inrluded.

(c) ALL Ti T2 ... Tn - A Listirrr of all tte Live

mutants for each of the giver ty;es is inrclucej.

(d) FAN'DOr TI T? .. T - listinc of one

randorrly selected live rnutant frr eac of the

qiven mutatit types is included.

Le) r PLI - Fis Zisr' ldyS the rode namrs of the

e, utant tyres as descrihe d ir tre r iy '.

The default for all mut.rt types is no listing. Cr)ce a

user decides to list a mutant tyrP, vi either an ALL

or a RANDOm, he cannr* later skitch to no Listino for

the type. However, he ,a) switch fror ALL to ;rrrDON or

from PAl.DOP to ALL for any mutant type.

i-
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CHAPTER IV

IMPLEMENTATION AND PORTABILITY DISCUSSIONS

The PINS proorar is written in FORTFAN as a

feasibility study of autorratic prograr rutations. Ir. otj er

words, we addressed the cuestion: "ran the concept nf

croorear mutation be imn Lerrertel in an autc,rrater systerr with

reasonable runtime and co,-ciitational sirflicitv?" It'e tnr

levels are depicted in the fnt Lrwina diaorai.

Driver-----PRFRUN ----- CLPTTY,CJFILE,CCFILE,CTF IL[,CrJL[,
I DISPLY,FILECF,GETNtVrTTYr,LTINFO,

M krCS,KFwTST,WFAST,urSTtI

-- PHAS E-----CLPTTY,!I SPLY,-VP(ED,rF RGF-,, XJrWrU,
YOL DU

-- POSTPN-----CLFTTY,CLF 'IP,ISF'LY , ' FvES,w'.Ew

PBeyond these levels, the control )Pthr are retativety

difficult to analyze from a raintenance rroorarer's PL0i n t

of view. The systew data structures are alrost entirely

nararetric and allocation is contained in mu.ltinte Cr0 Ot

blocks. The large nuvt, er of these blocks ar t their

extensive use permits many side-effects to take place as the

result of orocedures invoked at every level. These sioe

effects alsc qreatly corrlicate the issues concernine the

scope-of-control of procedures over their variables.

1.'
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PIMS executes in a paged ervirorrert a.' a siroLe

in aae 0ith about e7K byt's (f address sr ac- reouirpc! for

both the data anI the exectitarle code. Since th ..rrqrprr i!

tooicatly divided into three distinct rhas's, +h? a l ress

srace could [- re'4ucen %ith littLe i mr, act o r c xertjtnr- or

operation by irr t erment Rt inn the task a o verlays or

serarately executed proora,, . This arrroach is reccrrrpe -rec

for ije Lementino 'the PIvR rr.,qran. on rrst r i rico uters.

Portability

nurina the i-rle-ertation of FIrS or the F'h PIf C.

much cot a oration took rlace t,etwer- the research orou r at

Yale University and at , eoraia Tec. "v eliort used a

sixteen-,it rachine, the P RI"F-4C., 6hile tUe Yale effort

used a 36-hit nachine, the P[Csyste,-1(i. The only reIiun

avai table for transrortino r roorams any dati t etween these

two systems v:as nine-track m;cnptic tare.

Althouch hoth ver'ors claimec tC, suprort A' S I

compatible magnetic tares, files couto rot te writter ty one

system and read by the other withrut some fort of

intermediate processino. A list of this processino

includes:

1) Records which were written with fr characters rer

record and ore record er tr lock use cif f erent rethois
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oi indicating the end-of-record. recificatly, PEC

wrote an R2-character record with two trailing nulls

(binary zeroes) while PPIMr expected ar IC-cfaracter

record which included the two nulls.

2) Disk files with er edoed carriace-return/Iine-feo

secuences causee general havoc on both systers. The

Line-feeds usually h.jd to te re'oved t'efore any

rrogress was made in rrocessing the files.

A second and laroer set cf problers was ernccIuntered

when FORTPAN source files were mcved t etween the two

systems. Obvious prcblems develo-ea as a resujlt of the

differino word lengths and associated intener manritude.

The impact of many of these frohlers was lessenecl -Y the

PRIME FORTRAN neclaration for lono-intecers, I',T*I,

which srecifie a 32-hit integer. In order to rerfor' the

same functions on divers conmuters, it would be necessary to

constrain all imrtementations. A discussior of those

constraints is presented below.

First, all integer qupntities should te kept .thir

the range -32,767 to +32,7$7. This would allow the syste,

to function on sixteen-bit machines that do not provide any

tong integer forms.

Second, the packing of multiLe fields of data per

integer variable shoitd e avoired. This racking is also
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inefficient for the Large word mactines, hut there are

severe unpackiro prohlems for the sixteer-hit rachines. In

our case, a 36-hi t word w' s used or tt r ECsyste'-1' to

contain two nine-bit and one eiahteen-Lit fields. .e ere

atIe to in'pLe ment this usino a tonc inte':"r an" ot ai r twe

eiqht-bit and one sixteer-tit fields. This (css c,

yannitude has not causer! urbtems ton 6ate. Fxr an(ed rance
79

can be obtained Ly segmentini the use of the systerm to

process smaller procrams.

Third, the character r rocessirr thpt is done in the

compiler and command processor should te ccne cithrr with

integer tokens sutject to the first ccrstraint. 1 irtee r .-9

tokens are not desirable, then at least characters -fculd .,e

- rocessec in FORTRAN P1 format. The Al Vrocessire ,ilt

decrease the efficiency for the laroe wrord rrachines acain,

but the character routines wilL be nortahle. t coo machine

independent "strinc subroutine" packace wouLt ,rcta, v h, A

better choice here.

Fourth, vend(r surplied features and all I/C should

be irbedded in user writter rocedurps. Ir some cases, this

will merely add a layer of run-time tinkane with th

parameters to the user routine teino rpase-, directt> tc the

vendor feature or I/( routine. However, t is layer allows

other system routines to te substituted ara code aaoe, to

provided for the behavior cf another techni'ue. V'odifvirc a

sl no te i'bedred routine is '.wr c easier ttar sep rc iro inr

L ....

It
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all of the uses of a specific staterrent throu ahout an ertire

system irplementatior.

We believe that the Phove techr.ioues should te used

in future imptenentation efforts. they were not used in our

system but the benefits of these technicues hecare arrarent

as we tried to -ass more an( rore FOF'TPA.N source data

between machines.

k.
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CHAPTER V

SUMMARY

A prograr rrut ation sytern was built nr is nk

operational on a FRI 'C-4( ninicomvu.ter. The user ra'i

soecify an input data file that contains z -0Fr(;utine khic

is valid in a certair suht et of the F"'PTFA:. r ro ra-ir'i

Lanouaae. This subroutine is rarsed, interpreted with user

specified test data anrH the user is oiver t-e orrortunity of

determining the cnrrectness of this t " t data either

-'anual Ly or throuqh the use of P predicate su, routi r,e that

will uetermine the correctness cf this tase routine.

Once thP user thinks he hps an 'eruat e tet 4 ata

set, this base rroorarr is wo-ified in sever-L Vays an

executed again after each mocification. These nodifications

are catle rrutants and each r-utant wi tL either survive or

die durino its execution. A lL mutants t t t roduce

incorrect results or will not be valid subset roorarrs wit

die. Those mutants that produce correct results i Il

indicate to the user that further analysis is needed.

hen further analysis is necessary the Lser -t'

determire that either a live rutant is eOuivalent with other

mutants and discard the eouivalent nutarits manually, or a

live rutant ir.iqht he elirinoted by auorentino the iest cata

set. The test data set is then modifiec as recuired anrd the

eutants that re, air live are executed ac'air. Each ti 're, t 'e
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rrograr will revort various statistics FhCL't tte lve

mutants remainina. ..hen the user is satisfiec ith

completeness of data achievec , the rocess stors. 6e rov

say that an accentat {e level of test data aoentrcy I as theer

reached. In mo re cuantitative tere!, sore r rcertanf of the

total mutants will rf-mAin live at ttis Loint. Fcr tests of

the same subroutine, we irterrret this percentage to mean,

The test data that shows the lowest number of Live mutants

at the time of comparison, has the most adeouate test data.

We use this feasure of test data adeouacy tr infer that the

subroutine with the more ad~oaLate test 4atz has beer tested

more thorouahly. In addition, the subroutir-e that is tleen

tested more thoroughly is more rrohably the Frost correct.

Prooram Mutation is a valuable asset in rroaram.

testing. The rethocolocy r!reatLy reduces the tine and

effort reouired to find errors in thcse procrams studied

thus far. Althouqh there is a wealth of FC!TRA', software in

the world today, it is difficult to obtain and modify

real-world software for anaylsis. This rroLlerr is thp tocic

of current research.

The P71" system discussed above uas not desioned w itt

the property of such torics as rcrtalility and

maintainability. I would like to sugoest that t~ese torics
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are siiitaLle for investioation in their cwi, rino-t. Ue i Ce j-

o f p roor ar fijt at ior i S current ty teinc fXterCder tC, f GLtI

examinina the effects 04 #-he rpt~rdc-Iory in severat

rrogramjin Lar'nuaces, some i n i h r ay .1e ch ta ine f i r'tc the

methodotcgies of prooran test inc in oeneral.

AL
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APPFNDIX A

ERROR MESSAGES

This locument descrihes the errors c etected ty PI's

durino the interactive thAses of a PFIS run, the ressaries

displayed by PPOS on detectinn of an error, and the actions

taken by PIS aIter fin in ar error. The err-rs are

divided into two classes: fatal and non-fatal, with fatal

errors resuttino in an abcrt of the I'S run. fatF error.I

only occur durino the Pre-Fur Fhse of f IS. The occorence

of a fatal error or the user erterirc r TLL dujrinn the

Pre-Pur Fhase of P1 . leaves all transient files as they

vere he fore the PI1'S run h-qan. nr;ce the user i ssi-es a

cor.rranC, thus sionallino the end of tte Fre-'un Ptase, he

will nc.t be able to issue a VJLL.

' e also arou the errors into thcse which nccur

durinc r~rsing the prooraw and those which occur strictly as

bad responses to rrompts mane ty PIFS. Farser errors altays

are fatal and the FIMS parcer is nesiareo tc aLort or

c'etection of a first error. That is, if the proora' has

multinle syntactic errors, the PImS Farser will rirt ar

error iressage for only the first of them.

NOTE :
The user should never end a FIA fur ty a CIPL-P.

The CTRL-F terrrinaticn vil cauSe further PI N.S runs to
perforr tinc-redictably.
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P ar:er Errgr _tt2§2__gcj

1he messaoes which t-e user ray er,((untpr c ruirin the

-arsinc of either the routine ,hich is teinn test c or Cf

the rreciCate sut.rotine are very simit I r tc t hose cererate

ty ar y F ;T R A conin e r. Sinrre a kr)c.v. eroe of FC T. is

;.rereouisite to a reenincfut use of the F TN syster, ar

,jrderstardina of tyricat co7 ri Lar Ii n nstics is aSsur'ec.

Ore asrect cf the F I didcnrstics trat is differert

fro - that of a tvoic -L confiter is tre afaat rature of

cor oiter diagnnstics. Tn the event that any corrri(e-ti re

error is encounterer w, ithin . oriuLe, the error is rerortped

at that Loint and the c mr iLe is 0horte . Tf ere i nc

atter, pt at cornite-time error trace-tack or recovery. I'f

ary errors are reported, the uspr is adviser' to scar t -e

rerainder of the routine ma 'tnatt y for cther syrtax err r

v rior tc a resubmissinn to FPIS. This rar,ual scar stelcc

save mar and machine time ourinc the Fre-run Fhase.

-~q
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Pre-RWn Phast

(a) The croQrarn Pame

(1) !Kessaoe: ILLEGAL FILE NA F
- Actior: Fereat rart (a).

() message: NON,- F I c TET Ppi - )C-C At FIEF
Action: reveat rart (a).

( ) essoe: FILE N E A CCNFLICT - CLIT I'T FILE

fLRFADY EXISTS
Action: llone. Serves. as a warnirc.

(b) The Run Type

(I) 'essaoe: ILLFG/L REPtY
Action: keheat rart (h).

(?) essaoe: PROGRAM NOT IN THE FINS FCPTPAN SL'.SFT

Action: Abort

( ) e sage T H F 1 OL. LOWI I, TP , ASIFP.T FILr. ARF
T ISSING:

Action: Ahcrt

(4) Message: THF F OLLO Cll TPAN'SIKT FIIFS ALAPr'Y
EXIST:

Action: Abort

(c) rronramn and Test Ca!E

(1) Vessage: ILLFGAL CLASSJFICATIO

Action: (A) rispLay the Lena( classification codes.
( ) p at pcirt (c-1) or the sarle rarareter.

(2) Message: ILLFGAL REPLY
Action: RepeAt Progrm and Test Cates
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(3) vessage: PPErICATr F [j oI T TI Ff, IcF t rl T

F X ST
Action: Abort

(1.) essaqe: ~P r RFD C IF ,l' 'L)IT 1FF CI't IC,,

F QUE NC F

Action. (A) D isnLay tt-e roorar 's for r'a r rG-f- ter

an( their c assifications.

(0) Disnta) the creoicate sutroL-tine
statement.

(C) Abort

(E) wessaoe: ILLEGAL VALUE

Action: Rereat the renuest for cata on the same

irrut formal rarameter(s). Urer'F irrut icne rer .

(6) vessace: NOT F1.3tiGH DATA SLPP[ IFr

ction: 1ereat the reouest for data on the sam e

ir.-ut formal rarameter(s). User'r irrut iar,c re .

(-A-.itionat Test Case

(1) Yessaoe: ILLEGAL VALUE

action: Pereat the recuest fcr date or thF sale

irrut forral varamreter(s). User's irrut ior rrer.

(2) Fessaoe: NoT FNn'i.H DATA SL'FPLTEr

Action: Aereat the reauest for data or tee sale

irout formal i arareter(s). User's iirut icncrer .

(p) Ad it ion of and etatus f uatTt§Cc---------

(1) wessaae: ILLECAL RFPLY

Action: (A) ris)Lay L t legral rer lies.

(R) Fereat Dart (e).

(2) message: ILLCGAL MUTANT TYFE

Action: (A) Disr, lay the coded names of the rutant

tyoD e s .
(R) I-epeat rirt (e).

(3) MessAce: THESE Nt'TANT TYPE, %F'd AL;'rAD'Y ON:

Action: None. Serves as a varrina. The other
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st eci fied uttant typeS wtich jpre of f are nci, or.

(1) rist1-ying and Q~iteyt~ing of Past Feesylts

- (1) M essaoe: ILLEGAL ;F'TUEST
Action: (A) risptav the ten3t rpruests for cart (f).

(g) 'PneraL Frrr

(1) N'essaae: PPnGRAMP FtILS

Action: (A) Display the test case cn which it fail.

(F) Cisc~tay thep way in ithjUh it failed.

(C) Vut (A) mdrc U-) ir tkie rutrut fi Le.

Dr' tbort

(e') ,Aessaq-e: PfRFIICAIE SUPPO1ITI&I- FAILS

Action: (A) ( isc Lay the test ca-se or. which it fait!:.

(P) risrtay the way in vhhich it faiLs.

( C) P-ut (A) ,nc' (R) in the output f ile.

( 1)) Abort

(3) 11'essope: OU)TPUJT FILi- FXTSTS - TYPE rILL C

C C) hTjINu .
Action: Abort onl rILL, d'etete cutcut file or

CO NT I N U .

(4) rtessaoe: TOG MUCI- r'ATA OR FtULTY SYP'IAX

A c t ion Per-eat t he j revious pror'rt f or n ur e r ic

i nput.

(5) !lessacle: ILLEC.AL VALUE

A ct io n: Reeat t he rrevious pror rt f or nur-ri c

i nput .
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(a) -ssa2ge: ILLEAL EQL'FSI
Action: (A) Disclay the Lega L requests for te -

Post-Run Phase.

(R) Re.pat tho Fost-;ijr Fhise.

(b) '*es saae: J LLF (AL WIlTA 'T I YPF .
Actior: (A) DispIay A le oa1 vL ,tant t)res.

(P) Leveat the Fost-ku Phase.
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APPENDIX B

FORTRAN LANGUAGE SUBSET

This appendix describes the FrPTFPP . suhset lar.ieae

whose programs can be tested usino the Pilot Nutation

System. Only the syntax of this suhset, specified in an

extended RVF (see telow), is given. The syrtax rresrnted is

in a "pure" form with the mundane aspects of F'nfTkft syntax

assumed. These include the followina: 1) statererts start

on a new Line and aroear in "card" cnlunns 7-72, 2) cclurrn

is the statement continuitior column, 3) statemert Latels

appear in columns 1-F, 4) na-es have lercths of 6 or less

characters, and 5) comment statements have a C in cclunr 1.

The PI"S FRT' N! sub set has the fol loWinc two

semantical restrictions: (1) al variaLtes ,lust be

declared, and (2) keywords, suct a s O and FNn, cannot Ie

used as variable names.

The subset of the FCRTRAN lanruane choser 4or this

imnrlementation of FIwS is such that IJTPCER processinc of

numeric data is possible. A proora' must be a SUrPCUTIN[

suborooram with an ootional parameter list. Farametrrs and

other variables must be declareo usino JNTrSF or riwrhFT0o

declarations. Arrays may Fe either ore or two dimensionat
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and rnay be sr-ecified in the INTECrk tte~t

Thte acceptabte controt structurer r nc Itire rthe

t on 1C a If, COT 0, ne st edCo (Q COT I AE , a r d Q

A r it h r etic Px pre s s ior s!v ~ay i rc I , ie ry c-f t e rc-eratrrs: *

o, /r A,*. Loai ca( exr ressiors ar rE st ricted to t t)

Staterent and must t-e ore oh t A. , C or .T. s

used i r, ay FOPTPPN systirs. Nur er ic vau t s shoutld hc

~ithirl the ranqe -3?,76? to 4+,-,7tc7 oup Ic the nl-turt cfl the

PRIJ'I-C4H sixteen bit architecture.

SNE tiription of Itt LE?99e Substt

-- Standarcu RNF i s auanented kvifh t h r fcotoinc four

a'htbrevipt ions:

( L lis t apoe nd ix <y > <X 5t > i s ec u iva I(-nt toc

(2) covr'a ist arpendix <y- : <xK-ccrrtti~t> is

eailvilent to

<Y> :: <X> (X> ,V

(31, or~tion < y> ::(X> [<z>l is ecuivatent to

<y> <: x> < X> <Z>

(14) choice 4 y> :.- <x> (<w> <Z>l is, ecuivatert to

<Yx 4 <w> <X> '<Z>
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<rrograr.> :=SU'PROUTINF <rFrograrr-rarre>

cformaL-arurreflt-corrl ti st)

<dectla rat ion- stat enflCt - List>

<executable-statemlenltist>

END

- <1orrraL-argumnft> :=<Variatle-rame>

<dectaratiofl-tateffrt> :=INTEGER <decLarz-tijfC~ncrrat1t>

<dectaration> <sca[ar-decL> I <array-decL>

<scatar-decL> <variabLe-nhffe>

<array-dect> <one-dir-array-dcLt> I t -c,dirarray-rdeck>

<one-dim-array-decl> :=<variabte-lare> ( <1''r-it>)

<two-dim-array-dct> :: varia-le-latYe> (<Lirrit-rair>)

<executabte-stateelt> r<tartet>) <stiterent>
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<Iabel> <positivP-iftecer>

<statement) <s imr Le-sta trreert> < (cord it ior.6 -stat en et>

I <do-loon-statepelt>

<simcrte-statement> :=<aoc-state"-elt)

<assioflP~ent-statereflt>

<continue-statement> I (return-stitempflt)

<cioto-Statement> ::= CC TO I COTO) <[PteL

<ssijonment-statement> ::(reference>

(a rit hme tic- ex r re s~in)

<contirue-staterrent> ::= iTINtIF

<return-statement) : RFTL!F'

conditionaL JtLRtj

<conditionaL-statemert> IFC <troicP1-exrressior>

<simpte-statement>

<do-toor-statement) <index-part>

<nut er-Loar-hody)

<boo. -enci)

<inoex-part) on <ta~eL) <incoex> <jrnitiat> ,<terv-irat>
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1, <iricrement>J

<outer-L1o -body> :t outer- Loocv-stateu.ent- list>

-<*Itter-Lcor-statenent> C<tahet>3

(<si'n Le-stateo~ent I

<condi tiona L-staterer~t)

0inrner-do- Loor >)

Cirner-cdo-toop> (:=inrlex-r'?rt>

<Loor- ocy>

[<Lcor:-end>]

< Loorz-hody> < Loor-st aterent- t ist >

{<sirprte-statemnrt> I <conii tionat-stat erert>)

<toor-end) : <tbet> (ocr-end-statement>

-<(o-end-statement> :: continue-statement>

<assiqnwent-state~rent>

<conditionaL-staterwent>

<index>) : <scalar-reference>

<initiaL> <scalar-reference> I rositive-integer>

<terrinij(> <scaLar-reference> I<vcsitivp-integer>

(incremrret) <scatar-reference> I 'csitive-jnteoer>
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<arithffetic-expressicn> F(arithnetic-exj re-sior>~ {+

-)3 <ae3>

<ae r <ae3> {tI/M <.ie?>

<ae?> r~ae?> **i (ael>

<(e1) <P)riryit i ve - p> - (dI>

<ar ithret ic-exrress ionl>)

<nrifritive-ae> <reference> < (ir te v er >

L2g-ill ELigrC§2-Qcl

<tooicaI-expressi'n> ) <~ia-xrrir

< tre ?t> E-<Ie> 3difci-xesrr <reE ioa(>

<arithr-etic-exnressiol>

- (retationaL-op> ::= 1L. .L. F .F G N .F .C7. I

<reference> :: scatar-relerer'ce> I<array-ore-refererlce>

(arra>-two-refereflce>
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<scalar-reference> <variabLe-nanme>

<a rray-one-ref erence> : <v~or i ab(e-name> ( <si ri te -a e>

<array-tw.o-ref erence> : vari at Le-nare> ( <sipv- e-ae>

<simpte-ae>)

<simote -a e> - L<ros it ive- i teier) *I

= ~<scadar-reference> {* -

<positi ve-intener>I

[-I <SC a La r-ref ererce>

<posit ive-inteaer>

a- Ionlifitr Nin

<croqram-name> <rarre>

<variable-nare> <ae

<name> :=<Letter> I<aLphar"eric-List>3

<Letter> ::= A C I C Dj EIF f- H I J r LI

M N I C j F G S I T I U I V Y Z

<a Lpharner ic> <letter> dnit

<dicit> <zero> I<positive-digit>

< ze ro> 0

<positive-dinit> 1 2 4 5 6 I7 IF
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<inteoer> (rositive-iflteppr> I (err-tUst>

<nosit ive-intecer>

<pa sit iye -i nteq er> =<rOsi ti ye -di ci t> [<u i it -Ii St> J
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APPENDIX C

COMMANDS AND ABBREVIATIONS

This apen dix descrites t he corf-anes arP their

abbreviations that are used tt communicate with Pll' curine

the interactive chases. The commands for srecifyinc mLtant

types follow.

The user specifies rputant tyres to PI"5 ?y usina tI-e

fot Lowino three character al'treviatiors. n F.hLrevictior

marked * means the mutant tyLe is not currertly im r Lrente .

There are no "futt word corrrancs f Lr specifying mutant

tyres.

(a) rata Declaration Mutatiors

(i) ALD - Array Limit [.efeuLt Inserticn

(ii) ALF - Tw, rimensioraL Array Lirit rermutation

(b) Data Reference wutatiorF

(i) CRP k - Constant ker acement. The value k>=1 c 1es

the neighborhood (i.e., c +/- k ) cf t e replacinc

constants. The user may chocse rot to specify k, in

which case a default value of k=1 is assumed (see

Appendix D).

(ii) SVF - Scalar Varialte PepLacerrent

(iii) SFC - ScaLar Variable for Corsthnt P eplcements

I.
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(iv) CFS - Constdnt for Fca tar Varialt e, Fe, acerent

(v) CAQ - Comnara, lP Array Narme Fertac rent

(vi) CFA - Constant fcr Array Peference e r Iac, er t

(vii) Sf F - Scalar Varia le for I rr ,y P ferPnce

kel'l ace-ent

(vi1i) AFC - Array 'eIererce fur Cr-st rt Lr l ce'ert

(ix) AFS - Array Reference for Scatar VariatLe

ke Lacerent

(x) AIp - w o ieensior t rray Inrcex Perrrutatic, r

'(xi) S V I k - Scalar Variable Ir iti LLization nertion.

The value >nf cives tte i+k set cf initiaLizinc values.

The user may chc,ose not to sPecify k, in wd.ich cas,

default value of k= is assurred.

(c) Operator Evaluation rutations

(i) ACR - Arith retic rerator Fe 7t ce r-P t

(ii) POR - Relational 0:,erator er, acerent

(iii) LCR - LoqicaL Connectrr kertacerent

'(iv) APP - Arithrretic I recedence Fer rLtat, r,

'(v) LPf - oica rcroernce rerrrLatiorl
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(0) Conitrol ffutations

() GLP -Goto L ahe~ Rer, a cerrent

(11) PA rl P at h Arnatys is

(iii) CSI -Continue Starpimpnt Trsertior

(iv) CSCO Continue Statelnent fDe~etior,

*(V) ILI' I nner 00) Loor Peeouniinrr

(vin !I A D £o Loor I r!- a ter at ior,

(i i RSR - Pturn St Rtme-,t Qe L acenT.-r t
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APPENDIX D

DESCRIPTION OF THE MUTATIONS PERFORMED

T his appendiy describes the t)peF of first crder

mutations hhich the Fit - Mutation Syste- considers and some

other mutations, marked .ith a "t", which nay he ccnsideren

in future extensions of riS. The wordino use, i tied to

the syntactic cateqories defined in the "FGRItf Larrptane

Subset" (see Appendix P) rnLy those proorams %hich aro ir

the subset Lancuage are considered to be vatio rrutations.

Daa etajration M~utation s

Array Limit refault Tnsertion is accorrrtisher by

replacina each scaLar reference in ar array dectaratinr h>

1.

Two nirensional Array Lirrit Ferrutation is

accompLished ty exchangin- each tvo dimensior, aL arra

dectaration Limit rrair.

lhe foLlowing sets are referenced in defininc the

mutation operations in this section:

--- set of aLt array references arpeerirn in the

program.

. . . . . . . I II .. . ... .. . .. . ... I . . . .. III o I " ,' I l
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C --- set of a L constants arpearinr, in excutatLe

statements of the rroarrr.

r --- the set {-k,-k 1,...,-1,{U,1,...,k-lk} where k> C

is supplied by the user

S - set of aLL scatar variabt-e nanes aopearine in

executabte statements of the oroorar

V1 --- set of all one dimensional array narres arrearinn

in executate stater.ents of tht! procrar.

V2 --- set of alL tvo dimensional array rares arrearinn

in executable statements )f the rtrnnrar.

1. Constant Rentacerent

Each constant c anpearino in any executarte staterment ir

rentaced by nerbers of the set

{c-k,c-k+1,...,c-l,c+1,...,c~k). ]f k=() is suL-tipd, ther

no constant replacements are produced ty PI"S.

2. Scalar Variable RerI.acefrent

-- ach scalar variable s arpearino in any executable statement

is renLaced by members of S-{s)

-7

- Scalar Variable for Constant Peplacement

Fach constant c appearinQ ir any executa le stateren* is

- rerlaced by membrers of S
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4. Constant for Scatar Vari;,hte kerlacemer.t

fach scalar variable s arrearing in ary executatle stotcrent

is redfaced by rembers of C.

C. Co~paribLe Array Na' e Pet Lac-mrnnt

Each instance of v1 in VI ,,rearinn in any executable

statement is rentaced ty rre-bers ef 0-{v). Fach irstance

of v? ir. V2 arpearina in eny executable statement is

rertaceo by members of V?-{v7L).

6. Constant for Array Reference Pentacerent

Fach instance of ar in at re; rinr ir. ;r executahte

statement is rerlaceo by nemLers of C.

7. Scalar Variable for Array Reference Lertacement

Each instance of ar in P acpearirg in an exectah[e statement

is repLaced by nembers of S.

e. Array Reference for Constant ertacemment

Each instance of c in C apearin ir ary executatte

statement is replaced by memters of A

9. Array Reference for Scatar Varial te Feptacerrent

Fach instance of s in S apneariro ir any executable

statement is rer laced by memt ers of
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10. Two Dimensional Array Index Perrutatinr

Each instance of references to two dimensional arrpys has

its indecies permuted

*11. Scalar Variahle Initiati7ation lnsertinr

For each s in S the initial value of s is set to members of

K.

QPDr!2. f!y !g9,in Mutalig i

1. Arithmetic Ooerator Perlacerient

Each instance of a binary operator to is re[tace ty rrerers

of the set {+,-,*,/,**)-(bo). Each instance of unary - is

eliminated.

2. Relational Operator Rentacement

Each instance of a relhtionaI operator rp is rer, Laced by

members of the set {.LT.,.LE.,.EG.,.NE.,.CT.,.GE.}-{ro).

3. Logical Connector Replaceffent

Fach instance of .AD. is replaced by .OP., each instance

of .OR. is renlaced by .ANC., and epch instance of .NO1.

is eliminated.

*4. Arithmetic Precedence Pe rmutation

Each arithmetic eypression containinc>1 arithmetic orerators
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is rec Laced by each of its distinct atternative rarsps.

*5. Loqicat Precedpe ce Permutation

Each loqical expression containing)1 lovical connectors is

relaced t.y each of its distinct alternative rierses.

1he followinn sets of statement lebe t are relererceo

in oefining the mutation operations in this section:

L -ll set of all statement labels in the rroora-.

TR t used to represent a stat ement which i 

oLaranteed to cause a pr'oray interrurt

1. rotce Label PenLaceyent

Each instance of t in l. in any gotc statement is rep lacec by

-'embers of L-{l).

2. Path Analysis

Each sirrple statement (inctucinq those which are imbedded in

conditionals) and each conditional statemert is replaced by

TRAP. Each index part of each do loor statement has a TRAPF'

inserted as its sutseauent statement. This checks that each

control Path is traversed at least once and can easily he

extended to see if each rath is traversed any nurtLer of

t imes.
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-3. Continue Statenert Insertion
S

lach 0o Loop which does not end on a continue staterent is

-r'ade tc do sc

_ 4. Continue Statement Deletion

Each do Loor which ends on a continue statement is made to

end or, the preceedine statement.

i5. Inner Do Loop Decouclinr

Inner do loons which end on the sbme statement as their

ccntaininq do loot are nacie tr end on a serarate, rosgibly

duplicated, statement.

*4. Do Loop In-4ex Alteration

Althnuqh this tye of mujtation is nct currertly imclemcrted

as d separate type, Se rrutatiors can he rroduced as a

-result of data mutations (see above).

7. Peturn Staten-ent Rertacer.ent

Each non-return simple statei-ent (inctuding those which are

imbedded ir conditionals) and each conditionaL statement is

replaced by a return statemert. Each indey rart of each do

loor statement has a return statecent inserted as i ts

suhseouent statement.
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APPENDIX 23

ENTERING AND MODIFYING FILES

FrouramS are normalty entered into tthe cc-~puter usi'-d

the PR!T (OSr10J Text Fditor (Fr,). T h ii e d ito r i s a t ine

oriented text trocessor whosF- tine vointcr is always Located

at the last Line rvrocessed (whether the rrocessinc is

nriftinoI tocatiflQ, movino nointer, etc.). lhe Ed-itcor

cerates in one of t6.o modes, !PUT rode or FDIT mode.

whenr creatina a new file, the Fditor is invoked thy

tyr i no

Ot, Er

which ptdces the Editor in th-e INPUT mode. 6.her. modi-fyino

an existino fite, the Editor is invokeH ty typino

QEn) fitename

w h ich r ta c es the !ditcr in the EM!7 rode. The "f ilename"

specifiedl is the six-character n a me assioreo t o th1,e r a

Prog-rar f ilIe be ing createc or modif ie d. At any t inye , t he

usser may type a carriage return (c /r) w it h no ot h er

-characters precedir'q i t. Th is i s knrown a s a *nut I .9

resnonse." This null response will switch the Editor fror

t he E D IT mcde to the !K:PUT morlp or f r orr Ik~rUT "mode to FrIT

r-ode.
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The INPUT mode is use.1 when er.t erinn text infornation

into a file (e. o., creatinc a- n rog rai). The worc I1PLT is

dist:layed at the user's terminal to indicate that the Fditor

- has entered the INP1,T mode. T he c/r key wit( terminate the

current Line of text and prepare the Fditor to receive a nek

Line. Tabulation is acconprlished with the hacksta.h (\)

character. Each hackslash represents tt.e first, second,

etc. tab setting; the ta, stons are at columns e, 15, and

-70. The use of c/r with nc text rrecedino it ruts the

Editor in EDIT mode.

The FnIT ffode is used when the conterts nf a file are

to he modifiec. o re than rfl commards are avaiLatLe,

-_ aLthouqh we will only describe a surspt of the available

commands *hat should suffice fnr rr st purposes. The

commands are described later in this aPrendix.

In the EDIT mode, the Editor maintains an internal

Line rointer at the current Line (the Last tire processed).

The co- 'ands TOP, ROTTOM, FIKD, and LCCATE, move this

pointer. The WHEPE command disrlays the current line

number; POINT moves the pointer to a specified Line nu r , l

The MOPF NUPFP con.mand causes the L ire nunlber to e

disotayed whenever a line of text is dis slayed. AL
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commands for tocatior and modification tecir .rocessinc with

the current line. The use of c/r with no text rrececiro it

ruts thP Fditor in INPIOT mode.

In either rrorle the user may cerrect errors in tyrinc

hefore tte terminatina (c/r) is ty:ied. 1 e last c racter

entered is deleted, rovino fror rioht to left, ore character

for e&cO hacksnace("'/s) tyred. The entire current Lire may

he deleted by tyninn the delete(del) character. The

character (t/s) is ohtained ty holdiro t e ey rarke- "CTRL"

or "CCe,TPOL" and then striking the key "I." ty line

fc(Lobed by the delete character is null, are A (cIr) at

that point wil[ switch the eitor into the alterrate noie.

Crderly termination of an Evitor session is done fro-

the EtIT mode. The command:

FILE filename

writes the current version of the edited file to the disk

under the specified filenarpe. The file wilL te created if

it did not rreviously exist or it will te rvertritter if it

uoes exist. If an eyistinc file is teino ridifieo, the

co"i and:
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FILE

writes the new version to the disk with the oto filename.

After the executior cf thte FILE cormand, tee Fditcr is

terminated and control returns to PRI*(.S signifiea ty:

on the user terminal.

- The fottowina general descriptions will aid the user

in adapting to the PFIMOS Editor.

Any number of tines may be moved frrm one location to

-- another using the DUNLOAD cormand. rUNLOAr oetetes these

Lines as it writes ther into ar auxiliary file. t L0A

command loads the new auxitiary file dala at the desired

point. Any number of tines ray be copied fror one location

to another using the UNLOAD command. (JfLCMD works the same

as DUNLOAD excert that UNLOA does not delete the lines as

they are being written.

Any tine the begins vith a leoat FOPTFAN statement

- number may he locaterd with the FIND crmtrand.

The MODIFY command is used when a Iine iust he

altered but the relative column atiorment must remain the

same.

s a m e .

A-
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The fottowinq is an aLphabeticat List of somre of the~

avaitte E d itor comma nds, . Fo0r a de ta i Ied des cr irt ior, o f

atL corTr- andis, the user i s re ferred to the F d it or fe f er e c e

S Sec tion o f T F~ NEV USER'S GUI 4 TO [P rT CFP ANPr PL'CFF[1ll.

Tr the followinc descriptions, the raraneter 'strinn' is any

series of A:SCII charhcters irctudino leAdinoc, traitinc, or

emtedded blanks.

APPFD strinoi.. .. .. .. .. .. ... .Arvends str inc to the ercl of

the cur rent t ire .

coTTore .. .. .. .. .. .. .. .. ... ..... cvs the rointpr be ycrl-' th e

L as t L ine of t he fi Le .

CHANGE /stl /st2/n IrC].... .. .. .. ke r-La c es Sti w it th st for r

L ines . If C is crnittec, c n-y

the first occurrence of st I on

each, line is chargedl; if (- i s

resent, a t L occurrences on

lines are charned.

DFLFTF [n] .. .. .. .. .. .. ... .. .. Deletes n lines, incLuding the

current line. The default

valule cf r i S On~p.
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DUNLOAD filename [n] ......... reletes r Lines fror. the

current file anc writes therr

into filerarre. Ithe oefault

viLue of r is ore.

FILE Cfilename] .............. WJrites the contents rf the

current file into fitena re and

SUTITS to FfkI'CS.

FI.D string ...................... 'nves the r.oirter to tie first

tine becinning with strinc.

INSFPT strine ................ Inserts the strinq after the

current tire.

LOAD filename ................ Loads text fror fi trame into

the current fite fotLowinc the

current tine.

LOCATE string ................ .'ves the rointer for.ard tc

the first tine containinq

strina. The strio iray

cortair, leadina and trailino

htanks.

MODE NUMHER................... Disrlays Line numbers in front

o# displayed tines.

MODE NNUMPER ................. Turns off the Line numher



240

dis. lay.

N "XT [ {+.1 .I . ... . oves thtie roirter n Ir es,

forwarc if r is I ositive anc

ackwarcd if n is necative.

POINT r] ........................ moves the pointer tr- (ine r,.

PrJ T n] ...................... PisrLays the current tine or r

Lines h oinrinn wit h the

current Lire.

OUIT ......................... Terminates the eciting session

without fiI irq the current

file.

r'FTYP[ strini ................ The current line is rerLace:! ty

strin'g.

T P .......................... woves the tr-inter one line

before the first Line of text.

iNLnik fitename n] ............ Copies n tines into fiLeneae.

WHEP ........................ Disntays the current Lin

number.

From time to time the user will rrotahly wish te view
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the contents of a file, delete an existino file or chanoe

the name of an existinr file. These c.ratriLities exist

outside of the [ditor facilities. In order to view a file

a' the user's terminal, the user types

fV, SLIST filename

where filename is the naire of the file to he Listed. Lpon

comnrletion of the listino, control is returned to PRIFOS.

Files may be deleteri *ith the PPIMOS command

- OK, DELFTF fitename

where fitename is the name of the file to hte aelpted. A

user may not delete a file that he does not own or that has

-- been appropriately protected.

Files may be renamed .ith the PRIMOs ccmmand

Or, CNAwE oliname newname

where oidname is the current name of the file and nevnafe is

the desired new file name. f user may not roname a file

that he does not own or that has been at-pro,. riately

protected.

%J
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APPENDIX F

SAMPLE PIMS RUN

The fotl~owinq is a cory of thr terffinaL riatoc 4rcfrT

a n initiat P1%, run. Scme~ cf tho Lires were o-nc'e' tc- fit

them on t he r a ae but thne inforration r resented iF

unchanged.

OK, SEG RLN>PIMS
PRF-RU'. PHASE

ALL INPUT MUST Pr IV UPPEF' rASF
ENTER THE RAW PP0(,PAlv FILE ~~

CATFGOP1ZF FORM~AL PARA'-FTER N
PPOG

1 sUFROUT I 'r SOP Tr?(,-,A)
2 C *E~j3PLF SOrT - ALL('W FAPLY 7EFflvINtTI0',
3 INTFGEF rN,A (N)
4 IK'TFCFR I
5 IT .TF(U- T
0A INTEGFP SORTED
7 C

I IF (N.LF .1) GCTr 3C.r -

9 1 O CO!JTI NUr
10 SORTED = 1
11 DO 2(Cl I1 ,N
1? IF (A(I-1).LE.IA(l)) GCTC 20C
13 T A (I -1 )
14. A-) = A(I)

15 A (I)= T
1 ( SORTED) = r
17 200 CONTINUE

18IF (SORTED.NE.1) GOTO V)C
19 300 CONTIN11F
2C RETURV
21 FND

TYPE NEYT COMMAND
INPUT
CATFGOPIZF FOPYAL PIRAPPETER A

10
IS MUTANT CCRRFCTNESS DEPFNrELNT ON A FRPICATF SUCKOUT1NEI
TYPE A YES OR NO

NO
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HOW M:ANY TEST CASES ARF TO PE SP.ECIFIFD?
2

SPECIFY TEST CASE 1
INTER VALUES FOR
N I

5

ENTER 5 VALUES FOR ARRAY A
1 2 3 4 5

TEST CASE NUMPER 1

PARAMETERS ON INPUT
N
PARAMETERS ON OUTPUT

.. A ( 1)= 1
A ( ?)= 2
A ( 1)=

A ( 4)= 4
- A ( 5)= 5

THE PAW PROGRAM TOOr 1 STEPS TO FXECUTF 1141S TEST CASE
HIT RETUR* TO CONTINUE

PLEASE VEPIFY THAT LATA IS (ORECT
TYPE A YES CR NO ****

YES

SPECIFY TEST CASE 2
ENTER VALUES FOR
N

"- 5
ENTER 5 VALUES FOR ARPAY A

9y -9; -55 r 56
- TEST CASE NUMRF ?

PARAMETERS ON INPUT

N = 5
A ( 1) 99
A( 2)= -99
A 5)=5
A ( 4)=
A 5): 5 f,
PARAMFTERS ON OUTPUT

A ( )-9
A 3 ?)=
A ( 3 )= f]

A 4 = 57
A ( )=

THE RAW PFOGkAF TOOK 51 STEPS TO FXECUTE THIS TEST CASE
HIT RETURN TO CONTII.UF

PLEASE VERIFY THAT DATA IS rORRFCT
TYPE A YES OR PO ,***

YE S

WHAT NEW TYPFS OF VUTANTS ARC To FE Cr'ISIDFrfR[
ALL
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MUTATION PHASE
POST RUN PHASF
NUMPFR OF TEST CASES = 2
NUMIFR OF LIVt MIUTANTS 

-

NUMPER OF MUTANTS = 24(

PERCFNTAGF OF LIMIP.ATED N-UlA ITS F C

MUTANT TYPES PNIP LIVE -'UlATS PROFILFc

TYPE MUTANTS LIVE* TYPE MUT ITS LIVF* TYPf UTtTS L .f,

ALD 1 0* Ckr 1- 4* SVR 42 3* SF r 12

CFS 30 2* CFA 12 0* 5FA 24 (1* AFC

AFS 12 0* AOP 12 (1* PCR I 5 * L r P . 7

PAN 1 1* CS[ I (* S 15 5 *

MUTANT ELIMINATION PETHOD PVOFILE

METHOD COUNT* WETHOD CCU T* VETHrr COLjNT*

TIMED-OUT 3 4 * REF U'DVAk 47' SIJFSCF r 7?*

ARTH FAULT ()* PDCNLY VIP 2* TRAP ST "T 15*

EQUIV 0* ZFPO DIV 0* 6PON(. ANS 75*

POST RUN RESULTS
HELP

C)0vMAPDS CAN USUALLY r E Al rT IVIATE r I r

TWO LETTLPS, COvMA"DO' 0RF A S F Lt(

HEL P - DISFRLAY TW I , P LP F ACF (Cf'vOT APPk]V.) "'

KILL - A PO PT 74 f Cfr f"T P0 (CI','rT A"FRIV.)

PROC.RAN' - TYFC THF P;, GPAM !EING tUTATF

TESTCASE N- TYPr THF TFSTCtS. I '

MUTANTS - TYPF tl L TH r  LIVE AUTA' TS

MUITANTS (KFY ,' r) (rY r Pr) (r y,,CF D)

- TYPF 'ThLY :"'UTANTS C(F THE SPECIFIF, TYLF

MUTANTS SELECT - SELECT TWE r1'Tf'TS W"'L'. STYLE

MUTANTS KEYWORDS - SEE THF rFY6CPPS. F(P Y','TANTS TYPES

HFADEP - D TScLAY THE PlyS FU HFArER

CORRECTNESS - DI SPLAY T,-[ '. THOP (,f , fT P" ;I '

CORRECTNESS

RESULTS - DISPLAY THE R SULTS FOP UTANTS CFEATFr

IN THIS RUK -.
STATUS - DI ScLt Y THE STATIIS r-F ALL ,l'TA 'T (1, CL 'r' I kr-

PPEVIOUS PUNS)

HALT - STOP THE CUPPENT PINS Pt

LOOP - ITERATE THE CI;RPEWT RUf'

OUTPUT TESTCASf S - JUST THAT,

OUTPUT MUTANTS - OUTPUT ALL LIVE NiTf' TS

OUTPUT MUTANTS (KEYWOPD) (rFYWOFP) ... (KFYWORr)

OUTPUT ONLY mUTANTF OF THF IN'rJCPTEP TYPE

OUTPUT UTANTS RANDOM - OLTPUT ONE FA D! CP %10TA.T OF

EACH TYPE

OUTPUT WUTANTS ANDOv (KEYk'OPD) (EYWCFD) (rEYwOrD)

POST PUP' PFSULTS
HALT
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